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Granular shear flow dynamics and forces: Experiment and continuum theory
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We analyze the main features of granular shear flow through experimental measurements in a Couette
geometry and a comparison to a locally Newtonian, continuum model of granular flow. The model is based on
earlier hydrodynamic models, adjusted to take into account the experimentally observed coupling between
fluctuations in particle motion and mean-flow properties. Experimentally, the local velocity fluctuations are
found to decrease more slowly with distance from the shear surface than the velocity. This can be explained by
an effective viscosity that diverges more rapidly as the random-close-packing density is approached than is
predicted by Enskog theory for dense hard-sphere systems. Experiment and theory are in good agreement,
especially for the following key features of granular flow: The flow is confined to a small shear band,
fluctuations decay approximately exponentially away from the sheared wall, and the shear stress is approxi-
mately independent of the shear velocity. The functional forms of the velocity and fluctuation profiles predicted
by the model agree with the experimental results.
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I. INTRODUCTION namic model does not include frictional forces between
grains.

The general features of granular shear flow have been The temperature is defined here as the mass times the
investigated thoroughly over the last several y¢ar8]. The  square of rms-velocity fluctuations. While the temperature is
following key points emerge in shear flow experiments on aa constant in shear flow of an ordinary fluid, granular tem-
large range of materials in two and three dimensions: perature is dissipated through inelastic collisions. Its spatial

The velocity of particles decreases quickly over a fewvariation plays a crucial role in determining the properties of
particle diameters away from the shearing wale, e.g., granular flow. We find that the granular temperature profile,

[2-4]). normalized by its maximum value, is roughly independent of
(i) The velocity profile, normalized by the shear velocity shear velocity and pressure. Temperature is introduced into

U, is independent obJ (see, e.g.[2,3)). the system via viscous heating over a characteristic length of
(if) The shear force is approximately independent bf,  the order of a few particle diameters. It is then dissipated via

if the granular material is allowed to dilateee, e.g.[8]). inelastic collisions over a longer length scale. Our model

(ii ) These features, together with the discovery of strongontains a description of the source and transport of fluctua-
inhomogeneities in the force distribution even during flowtions that allows us to predict the pressure and the shear
[2,9], might be taken to indicate that any continuum ap-velocity dependence of both the shear forces and the particle
proach, such as local hydrodynamic models, should fail talynamics.
describe granular flow. In the experiments reported here, which go beyond those

Here, we revisit the assumptions made in earlier hydrodyreported earlief10], the granular material is sheared in a
namic models of granular flow, via careful comparison to theCouette geometry with a rotating inner cylinder and a sta-
experimentally measured microscopic particle dynamics in aionary outer cylinder. The inner cylinder is connected to the
circular Couette geometry. This leads us to emphasize theotor through a flexible spring that allows either stick-slip
strong interplay between local rms fluctuations, the meamnotion or steady shearing depending on parameters. We may
flow, and the local density. When this coupling is properlyalso apply an upward air flow at a variable rate through the
taken into account, a hydrodynamic model, which we haveyranular material to dilate the material and reduce the
introduced in Ref[10], quantitatively describes all key prop- stresses. Our ability to vary the stresses via air flow, and our
erties of granular shear flow discussed above, including botbtudy of both stick-slip and steady dynamics in the same
flow properties and shear forces. apparatus, distinguish this paper from other experimental

The shear force obtained from the hydrodynamic modemeasurements of sheared granular mageg].
resembles the simple dynamic friction law found in solid-on-  In addition to performing force measurements, which
solid friction, i.e., the shear force is proportional to pressureprobe macroscopic material properties of the ensemble of
but approximately independent of shear velocity. We emphaparticles, we determine the dynamics of individual particles
size that this result is obtained even though the hydrodyby measuring the mean-velocity and rms-velocity fluctua-

tions of particles on the top surface of the granular layer. The

combination of velocity and force measurements, together

*Present address: Dept. of Physics and IPST, Univ. of Marylandwith variation of the stresses and the time dependence of the
College Park, Maryland 20742. flow, allow for a very sensitive test of our theoretical model.
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Previous experimental results and modeling approaches In order to understand the boundary between a seemingly
are reviewed in Sec. Il. Our experimental setup and resultiowing state and an apparently stationary state, various ex-
for the particle dynamics and shear forces in sheared grantgensions of the previous hydrodynamic model have been pro-
lar matter are discussed in Secs. Il and IV. In Sec. V, thQ)osed_ Jenkins and Askdri6] have studied the interface
locally Newtonian hydrodynamic model is described in de-petween a flowing region and an amorphdhigh-density
tail. We conclude in Sec. VI with a discussion of the mainyegion that is at rest. In this paper, the thickness of the shear
results and the broader implications of this paper. band is determined by the balance between the energy input

and the loss rate due to inelasticity. On the other hand, vis-
coplastic models have been proposed. The Savage-Hutter
Il. BACKGROUND model[17] uses the Mohr-Coulomb failure criterion to pre-

Efforts to understand particle dynamics during granulardlct the transition from solidlike to fluidlike behavior in the

flow may be rouahlv divided into adaptations of Continuumcontext of avalanching and rock slides. The constitutive re-
y gnly P ... lation connecting shear stress to shear rate is of great practi-

models, based on hydrod_y hamic or elastoplastic descrlptlon%al importance. Different relations have been proposed for
and models that emphasize the differences between molecy

) i . various situations, and several are summarized in a table in

lar fluids or solids and granular matter, such as the inhom 18]

geneous character of particle contacts and of stress transmis-—"

sion in a granular material. In this section, we review briefly

these different approaches. We conclude with a discussion of

the aim of our hydrodynamic model in the context of previ- Beyond measurements of the mean properteesh as

ous work. shear forcesthat are important for a continuum model, re-
cent experimental and theoretical studies have focused on
measurements of the particle dynamics and shear forces at

A. Continuum models of granular flow the scale of an individual particle.

Hydrodynamic models were motivated by Bagnolds pio-  Detailed measurements of the particle dynane=, e.g.,
neering theoretical and experimental work on shear forces if?—4)) révealed that in several experimental geometries par-
dense suspensiofig1]. The constitutive equations for mac- {icle motion is confined to sever@yenerally 5-1pparticle
roscopic quantities, such as the shear stress as a function gmeters close to the sheared surface. The velocity profile is
shear rate, were investigated in several studies of dense s(f§4nd to be roughly exponential or Gaussian. _
pensions with fixed volume. In the limit of large velocities, ~ Velocity fluctuations have been determined in dense
Bagnold found that in a fixed volume, the shear stress granqlar flows in different flow geometries. Spgce—averaged
proportional to the shear velocity squared. He referred to velocity fluctuations were measured with high-temporal

this regime as the “grain inertia regime.” He accounted for"€Solution in the interior of a granular chute flow using
the measurements by assuming that the local shear gtressdiffusing-wave spectroscofdp]. Fluctuations at the level of

. - individual particle motion wer termin ing vi im-
was proportional to the square of the local shear ratéle d particle motion were dete ed using video
justified such a relationship on the basis of kinetic argu-

aging of tracer particle6], though the video frame rate may
. : . . ’~ not be sufficient to capture all fluctuations between collisions
ments. Since direct measurements of microscopic particl

dynamics were not available, he assumed a linear velocit |- High-speed digital video imaging was used to determine

profile similar to that of ordinary fluids. (g7e]locny fluctuations in a vertically vibrated granular material

The development of hydrodynamic descriptions, extracte The force distribution within a granular assembly, mea-

from the “microscopic” dynamics using kinetic theory, was RS .
. . sured with birefringent diskgl9] or carbon papef20], was
pioneered by Jenkins and Savdde] and by Haft[13]. A found to exhibit strong inhomogeneities on the particle scale.

considerable amount of theoretical, numerical, and experig . . _
mental work has refined and modified this approach. ReStresses were found to be transmitted along chains of par

views of models of granular flow that describe many of these:\[ICIeS (force chaingin a static granular assembly and during

; . Shear.
studies has been compiled by CamptjaH], Savage{15], There have been several attempts to account specifically
and more recently, by Clemeft]. f

In the kinetic theory approach, the granular material is . these inhomogeneities in granular flows. Some ap-
y app ! 9 roaches describe the flow properties on the basis of fracture
generally modeled as an inelastic hard-sphere system. Co

stitutive equations similar to the usual Navier-Stokes equa; odels[21,23, while others introduced nonlocal constitu-

tions of hydrodynamics may be obtained in the limit of small lve equations coupling force chains to flowing grajas].

inelasticity. The transport coefficients entering the flow equa- The shear strength of deformable, inelastic spheres was
. Y. P 9 dUar,odeled using a discrete element method by Aharonov and
tions are usually computed at the level of the Enskog equ

tion [38], an extension of the Boltzmann equation that take;SNﬁﬁirﬁ[ﬁg' ;? : a?%gsrg Is found to adjust to a critical density

the finite size of particles into account but neglects correla-

tions between collisions. Due to the assumptions that enter
into the kinetic theories presented above, these descriptions
are limited to rapid granular flows and to intermediate or While theories and models of granular flow have become
low-particle densities. remarkably detailed, the assumptions of each model may

B. Alternative descriptions of granular flow

C. Our hydrodynamic model
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strongly influence the results. As noted by Camplp&H], portant in the quasistatic limit, where contacts endure and the
detailed experimental measurements of particle velocitiesnodel is expected to fail.
granular temperatures, and densities were often unavailable Previous approach¢$2,13 have used the Enskog kinetic
when models were developed. The measurements reportéldeory to derive the hydrodynamic equations appropriate to
here should help assess the validity of the assumptions afescribe granular material in the collisional regime. These
various models. approaches correctly take into account the excluded volume
Here, we revisit the local hydrodynamic model and care-between colliding particles. However, since they are based
fully reexamine the assumptions made to derive the constion & Boltzmann-Stosszahlansatz assumption, they neglect
tutive equations in view of our experimental measurement@ny correlation between encounters. Such an assumption
of individual particle dynamics and mean shear forces. breaks down at large densities where correlated motion of
The mean shear forces have been studied before in é?ﬁrti(_:les occur, e.g., throug_h cooperative rearrangements. In
experimental system similar to ours: Tardeisal. [8] inves-  €!astic systeméi.e., those without energy loss during colli-
tigated the effect of an upward air flow through the granula/SioNS: the viscosity is then found to exhibit an anomalous

material on the shear forces. The shear force was found |r\]/eré:].ence with d.?rr]]zity int the highr—](ljensity "InthI_zt% di
decrease linearly with air flow. On the basis of Bagnold's € divergence with densily IS rougnly equivaient to the di-

results[11] and much subsequent work, it is clear that dila-Sr9ence with decreasing temperature for a supercooled lig-

tancy has an important effect on aranular flow. This w | uid close to the glass transiti¢@9]. Such anomalous effects
y a portant efiect on granuiar flow. This was aisq, o expected to occur in granular material close to the ran-

convincingly demon_strated in the experiments by Tardo_%om close packingRCP), which is experimentally found to

_et al.. If the material is allow_ed to expand, the shear stress i$)q 63.79% for slightly polydisperse systefi?§]. For a wider
independent of shear velocity. On the other hand, if the Magsiribution of particle sizes, larger densities can be reached.
terial |s.co_nf|ned to a fixed volume, ngnold’s result (_)f a In our paper, we explicitly include such high-density ef-
quadratic increase of shear stress with shear velocity ifects in the hydrodynamic equations. This leads to theoretical
found. predictions in quantitative agreement with most of our ex-

The interplay between dilatancy, fluctuations, and flow isperimental results. It also provides a direct connection be-
complex. Theoretical investigations have not yet producedween the dynamics of granular media and glasses, as has
results that are consistent with measured niesacroscopit  been proposed by Liu and Nad&o].
properties and measured dynamics at the parficiero-
scopig scale. Granular material develops a greater resistance IIl. EXPERIMENTAL SETUP
to flow as its density increases. Previous theoretical treat-
ments of granular flow have either been restricted to the
lower-density rapid-flow regimégl], or they have incorpo- In the experiments, we shear the granular material in a
rated a yield thresholviscoplastic modelsthat produces a Couette geometry. The granular material used in most of the
well-defined transition from liquidlike to solidlike behavior experiments reported here consists of 6:8695 mm diam-
[17]. eter black glass beadfom Jaygo Ing. (p,=2.55 g/cn).

Recent experimental studies of granular flow down aThe color does not alter surface properties, but increases the
sandpile by Komatseet al. [24] using a long exposure-time opacity of the material, which facilitates the tracking of par-
video imaging have revealed that the transition between soficles on the surface as described below. We also carried out
idlike and fluidlike behavior may not be very well defined. experiments with a mixture of 1.3 and 1.6 mm chrome steel
The velocity profile within the flowing layer was found to be spheres ,,=5.0 g/cnt), and with polydisperse, rough ce-
exponential over more than seven orders of magnitude imamic spheregMacrolite ML1430 from Kinetico Corp.with
speed with no clear transition to a solidlike state. These rediameter 0.83-1.47 mm (,,=0.51 g/cm).
sults indicate that no strict transition may exist, but instead, In the experimental apparatus, the granular material is
one may be able to treat the solidlike state as a very higheonfined to a 12 mm gap between a stationary outer cylinder
viscosity fluid. and a rotating inner cylinder €51 mm), as shown in Fig.

As emphasized in the literature review given in Sec. Il A1l. The gap can be reduced to 3 mm. The inner cylinder is
and 1l B, two alternate directions may conceivably be fol-hollow to reduce its inertia and is coated with a monolayer of
lowed in order to describe granular shear flows in the highvrandomly packed glass beads to provide a rough boundary.
density, finite-velocity regime. One might try to extend qua-The outer glass cylinder is coated with a monolayer of ran-
sistatic descriptions based on friction and elasticity to thedomly packed glass beads up to the height of the top surface,
finite-velocity case. Alternately, one may start from a hydro-which allows observation of the top layer of grains through a
dynamic model, which is appropriate priori in the high-  mirror as shown in Fig. 1. The lower 38 mm of the inner
velocity collisional regime, and modify it to ensure that high- cylinder is stationary in order to minimize boundary layer
density effects are properly taken into account. In the presergffects.
paper, we have chosen the second route, and we show that To shear the material, the inner cylinder is rotated with a
the inclusion of such high-density effects allows for a coher4000 step/turn microstepping motdrom Aerotech Inc. at a
ent description of various experimental results for sheawariable rate of 0.0021 Hz. The rotation rate is smoothed
flows. Although the model does not include solid friction by a 100:1 gearhead for ratesl Hz. The rotation rate of
between the grains, friction forces will in fact become im- the cylinder imposes the shear velodiyat the boundary of

A. Apparatus
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S Inc.) operated at variable input ac voltage. Flow rates are
Diemlacenent measured by means of an air velocity transdyEdiA 904,
FE“E‘“’“ Omega Ing. For the range of air-flow rates we employed,

LR ' the average density of the granular material changes by less
than 10% and the flow speed is calculated in first approxi-
mation assuming the porosity for random close packing.

Since the air flow exerts a drag on individual grains, the
effective weight supported by neighboring grains decreases
with increasing upward airflow. This effective weight of in-

ccD dividual grains, in turn, should be proportional to the pres-

sure inside the granular material. We may, therefore, reduce
the pressure by applying an upward air flow, and increase
pressure by applying a downward air flow. The proportion-

ality factor between air flow and pressure can be roughly
estimated by calculating the upward drag exerted on a single
sphere at the mean-air-flow speed within the granular mate-

MOAR I rial [31],

FIG. 1. Experimental setup: The granular mate(ietween two B. Determination of particle dynamics

concentric cylindersis fluidized by an upward air flow and sheared . .
by rotation of the inner cylinder, which is connected to the motor We measure the mean particle velocitiééy) and the

through a flexible spring. Shear forces are determined from thé/(alocity quctuqtionsﬁV(y) on the upp_er surfacg of the_
spring displacement. Particle motions in the top layer are measurédf@nular material. These should approximate particle motion

through the glass outer cylinder with a fast CCD camera. in the interior based on previous measureme® that
found very similar velocity profiles in the interigmeasured

with magnetic resonance imagingMRIl) and x-ray tech-

the granular material as throughl=2nrw, with r  niques and on the bottom surface of a shear cell. We return
=51 mm the radius of the inner cylinder. The inner cylinderto this issue in Sec. VI.
is connected to the microstepping motor via a flexible tem- The trajectories of individual particles in the surface layer
pered steel spring. This spring configuration allows us tcare determined with a fast charge-coupled deJC€D)
measure instantaneous shear forces with excellent dynami@mera at 36 1000 frames/sec. Particle motion is extracted
range and precision, since the spring bending is proportiondtom four sequences of 2000 images using procedures writ-
to the applied shear force. We measure the spring bendingn in interactive data languadéDL) (RSI Inc) based on
with a capacitive displacement seng@MD1051, Electro tracking routines provided by J. Crocker and E. Weeks.
Corp) that is rigidly connected to the motor shaft at a radial In the first step of the tracking process, both long-range
distance of 4.2 mm from the shaft. The spring constant of thérightness fluctuationgi.e., nonuniform illumination and
spring (dimensions: 0.5%7.5x165 mm) was determined short-wavelength noise are reduced by applying a bandpass
to be 226-8 N/m. filter with a short-wavelength noise cutoff and a long-

The soft connection between the motor and the inner cylwavelength cutoff of roughly one-particle diameter. In the
inder permits both stick-slip dynamics and continuous mo-second step, the positions of particlesughly 100 in each
tion of the inner cylinder to be obtained, depending on paimage are determined by calculating the centroid of each
rameters. However, when a uniform speed of the cylinder ibright region in the filtered image. This yields a spatial reso-
required for the experiment, the spring is replaced with dution of <0.1 pixels, provided that the bright region is sev-
rigid connection. In that case, measurement of shear forces &ral particle diameters wide. Black glass beads are better
not possible. suited than undyed glass beads for an accurate determination

We may also apply an upward air flow at a variable rateof particle positions, since black beads are more opaque.
through the granular material. The air flow enters the granuThis reduces internal reflections and reflections from par-
lar material through a circular opening between the cylin-ticles in deeper layers. In order to improve spatial resolution,
ders, and leaves the granular material through a circularlyhe intensity peaks are broadened by taking images slightly
symmetric opening at the top. This assures a uniform aireut of focus. The broader intensity peaks improve the preci-
flow rate throughout the material. Flow-rate uniformity was sion of the centroid determination. Defocusing also reduces
tested by observing the position of air bubbles as they leavthe intensity of secondary peaks due to scattering by multiple
the upper surface of the granular material. Air bubbles fornmparticles to a level where they are no longer interpreted as
at high-flow rates in the class of granular materials used iparticles. For the ceramic particles, the defocusing process
this experiment. The random position of air bubbles indicategliminates multiple peaks due to the substructure of indi-
that the flow is uniformly distributed throughout the gap. vidual particles.
Except for this test for flow uniformity, none of the experi- In the third step of the trajectory determination, the par-
ments presented in this paper was carried in the presence tifles are labeled and the evolution of their position through
air bubbling. The air flow is provided by a blowéRigid an image sequence is determined. The assignment of par-
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ticles to corresponding points in the previous and next frame 1 4&
is based on a tracking algorithm, which minimizes the total
squared displacement within a sequence of frames. In a final ﬁ?
step, the probability distribution of individual particle dis- I ‘1;\ 1
placements is used to verify that large displacement particles x
are not systematically cut off. 3&

Since the mean-flow velocity is comparable to the rms-
velocity fluctuations close to the inner cylinder, accurate o,
tracking of particles is only possible if the maximum dis- - &, .
placement is considerably smaller than the distance between ”d%
particles. We have verified that particles are accurately %g! .
tracked, even when the maximum particle displacement be- 0r
tween frames approaches the particle spacing.

From the particle tracks we determine average particle y/d
velocitiesV(y) and rms-velocity fluctuations perpendicular
to the flow directior] 6V,(y)] and parallel to if 6V,(y)] as FIG. 2. Mean-particle velocitynormalized by the shear veloc-
a function of distanceg from the rotating inner cylinder. The ity) as a function of distance from the inner cylindén particle
position resolution 0 0.1 pixel yields a resolution of par- diameters for glass spheres. The respective rotation rates of the
ticle velocities and fluctuations of better than 0.1 pixel/inner cylinder arg(in Hz) : 0.004 (hexagony 0.04 (squares 0.01
frame. The upper limit for measurable velocities is given by(open trianglel 0.4 (crosses This corresponds to sheawith air
the tracking routine, which requires that the maximum dis-flow) velocitiesU, respectively, equdin mm/s to 1.28, 12.8, 3.2,
p|acement be smaller than one_partic'e diameter. Larger paﬂ.28 The solid triangles show the VelOCity profile at a rotation rate
ticle images yield a larger velocity range, but the velocity©f 0.01 Hz U=3.2 mm/s)withoutair flow. The normalized mean--
profile may not improve since fewer particles may be tracked’_eloc'tY profile is |ndepende_nt of shear veloglty f?md shear d_ynamws
in a single image. A mean-particle size of about 20 pixe|s(|nterm|tter1t or steady motignThe dashed line is the soluthn of
gives sufficient dynamic range for the velocities with goodEd-(28)» With 6=4.7d, y,,=2.8d, anda=0.4( see text for detais
statistics. . . i . . .

The measurement of rms velocity fluctuations captureé:y_“nde_r' The_ mean-_velqcny pro_ﬂle W'thO.Ut air flow in the
Sfick-slip regime(solid triangleg is essentially the same as
that for steady shearing. The dashed line shows the theoret-

(of up to 1000 frames per secondCollisions on a faster . | orediction f hvdrod : del. which will b
timescale smooth out the measured fluctuations. Since avefR2 Pr€ iction from our hydrodynamic model, which will be

age collision times near the sheared surfeestimated from dlscyssed in Sec. V. . .

average speeds and densitiaee comparable to the framer- . Figure 3 shows the perpendlcular. rms-velocity flucf[ua-
ate, we are close to capturing true velocity fluctuations. WeionS &Vy., which have not been previously measured in a
note that the collision rate may increase with increasing den-

sity away from the inner cylinder. The true fluctuations may 0
therefore decay even more slowly with distance from the

inner cylinder than the measured fluctuations described be-
low. Higher-frame-rate measurements of local fluctuations,
with simultaneous higher-spatial resolution would be re-

quired to improve the fluctuation measurements.

v(y)/U
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T l T | T

o)
&&e&%ﬁg\ —
e P
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IV. EXPERIMENTAL RESULTS

A. Particle Dynamics

log,,(rescaled 6V, . (y))

The behavior of the inner cylinder is found to be very -1 = N
similar to the dynamics of a rough plate sliding across a s | ! |
granular layer[32]. At low-shear rates, the motion of the 0 5 10 15
inner cylinder is intermittent with short, rapid slips, and long y/d
periods of sticking. At sufficiently high-shear rates or with a
stiff connection between motor and cylinder, steady motior}ec
of the inner cylinder is observed. Air flow reduces the sheal
forces, as _alrea_dy not_ed by Tardetsal. [8], and it also SUP- 4 ,ations are rescale@hifted vertically such that all experimental
presses stick-slip motion. . points are forced to agree wt=3d, whered is the bead diameter.

The velocity profileV(y), when normalized by the shear The dashed line is the theoretical resisite Sec. Y, with a decay
velocity U, is roughly independent df, as shown in Fig. 2. |ength 5=4.7d and a boundary positiog,,=2.8d. Measurements
Note that, as we have mentioned previously, the shear velogre made on glass spheres, with symbols as in Fig. 2. The fluctua-
ity U is computed from the rotation rate of the cylinder tions could be underestimated, due to finite frame rate measure-
throughU =27t w, with r=51 mm the radius of the inner ments, especially at larger vy.

FIG. 3. rms-velocity fluctuations perpendicular to the shear di-
tion. Fluctuations decrease roughly exponentially far from the
fnner cylinder, but more slowly than the mean flow. The rms fluc-
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three-dimensiongl3D) system to our knowledge. When data
taken at different shear velocitid$ are normalized to the
same magnitude at a distance of three-particle diameters
away from the wall, the fluctuations follow the same profile,
independent of shear velocity and independent of the pres-
ence or absence of stick-slip motion. The velocity fluctua-
tions decrease roughly exponentially far from the inner cyl-
inder but fall off more slowly withy than does the average

velocity. 0.001 |- .. -
We determine fluctuations by averaging the velocity of a | | | | | '.
small section of the image over a long time and then calcu- s 8 10 12 14

lating deviations of individual particle velocities from the
mean of that section. The measured parallel fluctuation am-
plitude, therefore, includes fluctuations of the flow speed, FIG. 4. Velocity (solid circle3 and fluctuation profile(open
which can be caused by the soft spring connection to theircles close to the stationary outer cylinder. Each profile is nor-
motor. In order to compare velocity fluctuations during stick-malized by the shear velocity.

slip motion and steady shearing and to compare the measure-

ments to the hydrodynamic model of a steady-state flow, wé&lecreases roughly exponentially up to roughly two-particle
show only the perpendicular fluctuations. We note that evesliameters from the outer wall.

during steady shearing, parallel fluctuations are larger than As discussed in the previous section, an upward airflow
perpendicular fluctuations, but their ratio remains roughlyreduces the effective pressure, while a downward airflow in-
independent of, as shown in Fig. 5 below. creases the effective pressure within the material. This allows

In principle, the density profile could also be measuredus to measure the pressure dependence of the velocity and
using the tracking algorithm, by counting the average numfluctuation profile. Figure 5 shows three experiments at dif-
ber of tracked particles as a function of positianin prac-  ferent air flow rategi.e., pressure In order to avoid stick-
tice, however, no quantitative results could be obtained beslip motion without airflow and with downward airflow, the
cause of the limitation of the tracking method to resolvemotor is connected rigidly to the cylinder for these experi-
particle positions in the third dimenside.g., for low densi- ments. The crossing points of the temperature and velocity
ties, particles from lower layers are also counted: the densitprofiles in Figs. 4 and 5 are different because the mean ve-
is thus quantitatively overestimated, while this does not aflocity was different and the absolute value of the measured
fect the mean- and rms-velocity profijleQualitatively, the fluctuations depends on shear velocity.
measured density profile increases with the radial coordinate Neither the velocity profile nor the profile of rms fluctua-
toward a limiting value at large distancésot shown. The tions (the granular temperaturehange with pressure over
density close to the moving boundary is measured to be up tdhe range of pressures accessible with this method. This is
40% below its limiting value, depending on shear velocity consistent with our hydrodynamic model as described in Sec.
and airflow. The density increases rapidly with distance fromV. Note that the rms fluctuations parallel to the shear direc-
the sheared surface over several particle diameters. This is fipn are larger by a factor of roughly 1.3, even though the
agreement with other numerical and experimental observa-
tions[3,37].

We now examine the particle behavior near the bound-
aries in more detail. Close to the inner cylinder, it is difficult
to distinguish wall particles from particles that move close to
the wall. Because we image the surface from a slight angle
and because the height of particles fluctuates slightly, the
boundary between wall particles and sheared particles fluc-
tuates. We have examined the boundary conditions with both
steel spheres and rough ceramic spheres, which allow us to
distinguish the particles from the layer of rough glass beads
glued to the inner cylinder. We find that the granular tem-
perature has an approximately constant value in a region
about three particle diameters wide near the inner gale

Fig. 3). , , FIG. 5. Velocity profile V(y) (solid symbol and rms-
Slnce particles barely move close to Fhe stat[onary OUtefj,ctuation profile 5V(y) (open symbols both perpendiculatno
cylinder, the granular temperature at lasgis examined at a |ineg) and parallellines) to the shear direction at different effective
lower frame rate than is necessary at positions close to thgessures controlled by air flow. Measurements on glass spheres
rapidly moving inner cylinder. This yields better statistics for with upward airflow (triangles pointing up no airflow (circles,
the mean velocity, but leads to an underestimate of fluctuaand downward airflowtriangles pointing down The measured
tions in particle motion. Figure 4 shows the mean velocityfluctuation profiles do not depend significantly on the pressure, but
and velocity fluctuations close to the outer wall. The velocitydo depend on the shear velocity.

y/d

ViU
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FIG. 6. Comparison o¥/(y) for smooth glass spherésircles, y/d
rough porous ceramic particldsriangles, and steel sphere mix-
tures (squares at a rotation rate of 0.04 Hz, correspondingUo FIG. 7. Velocity profiles(Solid lineg and rms-fluctuation pro-
=12.8 mm/s. files (dashed lingsin a narrow gap geometry with gap width of

4-5 particle diameters. The velocity profile is linear and the rms

. . . fluctuation profile is constant. Measurements are made on glass
mean velocity cannot fluctuate due to the rigid CO””eCt'Or!spheres with rotation rates of 0.1 Heircles and 0.02 Hz(tri-

between motor and cylinder. This anisotropy has been 0bsngles, corresponding t&J=32 mmi/s and 6.4 mmis.

served previously33]. It may be connected to an anisotropy

in pressure in a sheared granular sys{@h35. the granular material. We may therefore assume that air flow
The velocity and fluctuation profiles are independent ofdecreases the pressure roughly linearly with increasing flow

shear velocity and shear dynamics, but may vary with theate.

material that is sheared. The rms fluctuations decay signifi- When there is no air flow, we also find that the shear

cantly more slowly than the mean velocity for all materials. stress is roughly independent of shear velocity even though

Our model contains three parameters that determine the VéIiCk-S"p motion is observed. This indicates that some veloc-

locity and fluctuation profiles, as discussed in Sec. V. Thes#y Weakening(i.e., a decrease in shear force with increasing

parameters may depend on material properties in a nontrividelocity) must occur. The mean shear stress with air flow is a

way. In Fig. 6, we compare three very different materialsfactor of four smaller than the mean shear stress without air

(steel spheres, glass spheres, rough porous ceramic particlegow' For a smaI_I gap, the shear for'ce INCreases W'Fh decreas-

For all materials, the mean velocity decays roughly exponen!—ng shea_r velocity, eventually leading to the jamming of the
' inner cylinder below a threshold shear velocity.

tially far from t_he shear boundary. The charact_eristic length The air flow at which the transition from stick-slip motion
of that decay is between 1.5- and 2-particle diameters. Th{ao steady shearing is observed is shown as a function of

velocity of glass spheres decreases more slowly away frorpotation rate of the cylinder, i.e., of shear velocity, in Fig. 9.

the sheared cylinder than does that of rough ceramic pafye getermine the transition from the stick-slip motion to a

ticles. Steel ;pheres are about.twice as Iar'gelgs the ,g|a§t°eady sliding motion from the emergence of a peak at
spheres coating the surface. This leads to significant slip at i the probability distribution of the shear velocity. The

the boundary, and the profile is more nearly exponential inyitical air flow decreases roughly linearly with rotation rate,

this case. i.e., with shear velocity.
We have also done experiments in a narrow gap geometry,
where the shear region is only 4—5-particle diameters thick. A |:é I "2 o1rz
In this case, the velocity profile is linear and the temperature 120 - O 0.04Hz []
is roughly constant across the cell, as shown in Fig. 7. 100 |- % 3 8~8(1)4H§Z_
Fluctuations parallel to the shear are somewhat larger than 8ol v . - |

perpendicular fluctuations. The velocity profile is again inde-
pendent of shear velocity. The small gap result is consistent 60~ W n
with the hydrodynamic model of Sec. V: The uniform rms a0

fluctuations across the gap are accompanied by a linear ve- &
locity gradient.

Shear Force (N/mz)

1 L L L I
15 20 25 30 35
B. Shear forces Airflow (arb. units)

The shear stress is found to be roughly independent of kg, g, Mean shear stress vs air flow rate at rotation rates of the
shear velocity but to decrease roughly linearly with increaszylinder of 0.004, 0.01, 0.04, and 0.1 Hz, corresponding, respec-
ing upward air flow as shown in Fig. 8. The dependence oRively, (in mm/s to shear velocities of 1.28, 3.2, 12.8, 32. The shear
air flow is consistent with the results by Tardesal. [8]  stress decreases approximately linearly with increasing air flow. The
described in Sec. Il. Previous experimef§] showed that shear stress is independent of shear velocity at most air fighass
the shear stress is directly proportional to the pressure insidgpheres
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3,5%I I B B 1 only by a scaling factor close to unity. We shall therefore
_ $ disregard this anisotropy in our theoretical treatment. For the
£ b Steady Sliding | inelastic hard-sphere fluid of local particle densjty the
s i equations of hydrodynamics for the mean velocity fisd
: { and temperatur@ may be written a$12]
g 25 i —
< i oV
g mp| —+V-VV|=-V.o (13
g 20 Stick-Slip motion } ot
L { mp| vyt =-V.-Q-oik—eT (1b)
5 10 15 20 25 30 35 40 Pl ot - o.-k—el,

Shear Rate (mHz)
where : means contraction of the two tensors. In these equa-

FIG. 9. Alr_ flow at which the transition from stlck-sllp motion to tions, « is the symmetrized velocity-gradient tensor
steady shearing is observed as a function of the rotation rate of the

cylinder. The critical air flow decreases roughly linearly with the 1
rotation rate, i.e., with shear velocitglass sphergs Ka’,g:E(aaVﬁvL 3gVa), 2
V. THEORY

o is the pressure tenso is the heat flux, andce is the
A. Hydrodynamic model and main assumptions temperature-loss rate per unit volume. As in a Newtonian

Here, we propose a hydrodynamic model for granulafiUid, we assume dénear, local relationship between fluxes
flow to describe the data presented in the previous sectio@nd forces. We thus write the pressure tensor as
By hydrodynamic, we mean that@cal, mean relationship is Dbl _
assumed to hold between shear stress and shear rate, in con- o=Pl=27(k=V-VI), ©)
trast to recent approaches that advocate nonlocal relatiogyherep is the pressurey is the shear viscosity, anidthe

ships (see, e.g.[23], and[1], and r_efereng:es therginThe unit tensor. In a similar way, we assume Fourier’s law for the
grains are assumed to behave like inelastic hard spheres, Wiy 5t flux

a diameterd and coefficient of restitutiore. We therefore

neglectanyfriction force between grains. Within this model, Q=—\VT, (4)
collisions between grains are instantaneous. The inelasticity

coefficiente is moreover assumed to be independent of thevith A the thermal conductivity. These equations are com-
relative velocity of the two colliding particles. Our philoso- pleted by the equation of state of the material, in the form
phy is different from that of more sophisticated approache=P(p,T).

(such as the simulations of R¢87]), where the microscopic In the simplified planar shear cell geometry, the mean
model is taken to be as realistic as possible. Here, we delitflow is a function ofy only and parallel to the direction:
erately choose the simplest model: our goal is to show tha¥=V/(y)e, with g, the unit vector in thex direction. From
despite its simplicity, a hydrodynamic model leads to manythe momentum transport Eqla) in the steady state, one
nontrivial results that are usually attributed in the literature tothen expects

more sophisticated ingredients of granular flow. We check its

validity by comparinga posterioriour findings to the experi- d

mental results. As we demonstrate below, most of the experi- @ny: 0, )
mental properties of sheared granular flow may be explained

by this hydrodynamic, locally Newtonian description of the J

material. ay v 0. (6)

We consider a simplified Couette geometry: the granular
material is confined between two parallel walls, separated b¥pis shows that both the shear str
a dlstanc_:eH. Thex_aX|s is along the walls, while th;ea_X|s IS pressureP= o,y are independent of
perpendicular to it. The bottom wall, placed»t 0, is as-
sumed to move at a velocity along thex direction and the
top wall stays at rest.

We start with the equations of hydrodynamics for the in-
elastic hard-sphere fluid. Following common practice, we In order to solve the hydrodynamic Ed4), explicit ex-
identify the granular temperature with[ 5V]?, wheresV is  pressions for the transport coefficients and the equation of
one componentX or y) of the rms-velocity fluctuation pre- state in terms of density and temperature are needed.
viously defined in Sec. lll, anth is the particle mass. There When the system is at rest, the dengityn the granular
is a small ambiguity in this definition for a sheared granularmaterial is roughly given by the random close packiREP)
material since thex andy components of 6V]? (i.e., the  densityp, (the granular system does not crystallize because
components parallel and perpendicular to the flaliffer  of a slight polydispersity of the bead€Experimentally, the
slightly. However, as may be observed in Fig. 5, they differshear rate is found to dilate the systghi]. More precisely,

ess (=oy, and the

B. Equation of state and high-density expressions for the
transport coefficients

011307-8



GRANULAR SHEAR FLOW DYNAMICS AND FORCES. .. PHYSICAL REVIEW E 65 011307

the density decrease is larger close to the boundaries, whetlee density, temperature, and pair-correlation function at con-
the shear rate is larger, than far from the moving wall, whergact. We refer to Refd12,39 for explicit expressions. We
the velocity goes to zerf2,37]. As already quoted in Sec. note thatin the high-density limjtg(d) becomes very large

[ll, our experimental results for the density do qualitatively and the dependence of the Enskog transport coefficients on
agree with this observation. Consequenglyproad range of  density mainly come from the terms proportionaia). In
densitiesis explored in the sheared system, going from athis case, the transport coefficients reduce to the generic
value slightly below the RCP density far from the moving forms
wall, down to a density up to 40% less than RCP near the
moving wall at high-shear rates. This makes the problem
much more difficult than in standard fluids, where the den- 12
sity remains constant over the cell. Here, the functional de- ”E(p’T)znf’?g(d)T '
pendence of the transport coefficients on density is an impor-
tant ingredient of the theory since it does affect flow
properties.

1/2

1
NE(D,T)ZNoWg(d)Tm,
1. Equation of state

For an inelastic hard-sphere system, the equation of state

may be written in terms of(d) the pair-correlation function 1 1
at contact ¢ being the diameter38,39, in the form ee(p,T)=€op m¥Zd 9(d)T™ (11)
_ T3
P=pT|1+(1+e)7zpdg(d) () Wherem is the mass of the particles angh, \g, € are

dimensionless coefficients that depend only slightly on den-
(p is the local numerical density, i.e., the number of particlessity in the high-density limit. Ifp~p. as discussed above,
per unit volume. For both dilute and moderately dense sys-these coefficients may be taken as numerical constants. Fi-
tems (d®~1), g(d) is accurately described by the nally, we mention thag, is proportional to 1-e2, whereeis
Carnahan-Starling formulg88]. However, since the density the coefficient of restitution. Thugsy=0 in the purely elastic
of the granular material in the shear cell is close to randontase, as expected.
close packingRCP whereg(d) diverges, an alternative ex-  The full expressions for the transport coefficients obtained
pression forg(d) is usually assumef#0]: within the Enskog kinetic theory have been found in simula-
tions to be correct for small and intermediate densit4.
However, as mentioned above, the density of the flowing
oo (8) ver, ove
plpc material in the shear cell is higher and close to the RCP
, ) . density. In this limit, some of the Enskog expressions for the
with p. the density at RCP. The equation of state, B@s-  ansport coefficients may no longer be valid, mainly because
(8), then takes the following approximate form in the high- correlations between colliding particles and collective phe-

g(d)=

density limit: nomena, which are not included in the Enskog theory, then
1 play an important role. The reason is quite intuitive: at high
P=po—T, (9) density close to random close packing, a particle may move

(1_ ﬂ) substantially(over a distance of the order of its diameter

Pec only if its neighbors move coherently. Only collective mo-

. 23 _ ~ tion is therefore possible. It has been found in molecular-
with po=(1+e€)(7/3)p;d”. The equation of state thus gives dynamics simulations of the hard-sphere mofi7] that
a natural link between temperature and density: since thghese correlations only affect the shear viscosity and self-

pressure is independent pfone obtains diffusion coefficient, which depart from their Enskog ap-
proximation at high densities. On the other hand, the thermal
1P _Por (10 ~ conductivity has been found to be well described by the En-
pc P skog expression up to very high densities. Such behavior is

i . . in fact expected since transport of energy does not require
This equation s_hows tha_lt the regions of sma_II temperaturggtion of particles over large distancésnly “rattling”
correspond to high-density regions;-p, and vice versa.  4round the mean position is involved in energy trangport
Similar conclusions were reached by Leutheu§28} on the
basis of a mode-coupling calculation for the elastic hard-

Expressions for the transport coefficients of the inelasticsphere model.
hard-sphere model have been computed from the Enskog As a result of these considerations, the thermal conductiv-
equation[12,39. This kinetic equation takes the effects of ity N and loss rates are expected to keep their Enskog ex-
excluded volume into account, but it neglects any correlatiorpressions\g and e, as given in Egs(11), over the whole
between the velocities of colliding particles. This approachrange of densitiegbetween intermediate densities up to
yields expressions for the transport coefficients in terms oRCP

2. Transport coefficients
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1 1 _
)\(p,T)z)\omel/zl P~ pe W(P)N%' (15)
=
Pec Pc

1 Pe As we shall show in the following sections, the knowledge of
E(p,T)zeomW% —TY2 (12 these two limiting behaviors is sufficient to obtain a quanti-
( 1— ﬁ) tative description of the flow and a qualitative picture for the

Pc shear forces.

Combining Eqgs(9) and(12) allows us to write the trans-

On the other hand, a crossover is expected for the sheaort coefficients in terms of the pressure and temperature as
viscosity between its Enskog approximation in Efjl) for
intermediate densities, towards an asymptotic stronger diver- mY2_{ poT "
gence as a function of density very close to RCP. Such a ﬂ(P,T):?ﬂ(?)T : (16)
crossover is indeed found in molecular-dynamics calcula-
tions of the self-diffusion coefficient in a monodisperse hard- L 5
sphere system close to freezif@l]. By analogy with the B
behavior of supercooled liquids above the glass transition Mp T)=No g2 poTY?’ (17
[42], we shall assume that very close to RCP, the viscosity
divergesalgebraicallyas a function of density nearp.

e(p,T)=€y—17 —5- (18
” m1/2 m 2d Tl/2
np T~ ——p—5 T (13 . : "
1_3 d? (Note that in order to improve readability, we dropped a
Pe numerical constant prefactr./pq in the expression foe,

which amounts to a rescaling of the numerical prefaetor

Here, 7, is a dimensionless numerical constant. At this point,
the exponentB is a phenomenological parameter in the C. rms and mean flow velocity profiles

theory. Since the viscosity is expected to diverge more | this section, we compute the granular temperature pro-
strongly than its Enskog expression, we exp@oo be larger  fjje T(y) and mean-velocity profil&/(y). In the stationary

than one. We shall discuss in the next section how the forngq ette geometry, the hydrodynamic equation Tgy) is
proposed in Eq(13) compares with the experimental results. ¢5,nd to reduce to'

We emphasize again that such an algebraic divergence of
the viscosity is expected in supercooled liquids close to the d d )
glass transitioi42]. More precisely, an algebraic divergence @)\(P,T) @TﬁL oxyy—€(p, T)T=0, (19
is associated with the existence of cooperative interactions
that predominate over thermally activated proced<Es. and
The functional form in Eq.(13) is predicted by mode-
coupling calculations of the dynamics of supercooled liquids.
In the case of a 3D hard sphere, the latter approach yields an
exponent3=2.58[43]. : . . .
To our knowledge, there is no expression for the viscosit)y"hereyzdvx(y)/dy is the shea_r rate. Using the expression
over a full range of densities that would make explicit thefor the shear stressr,, = 7(p,T) v, the second term of Eq.
crossover between the Enskog expression at intermediaté9) may be rewritten asr,,y= aiy/ 7(p,T). Note thato,,

densities and the asymptotic expression at very high densjg negative because=dv,/dx is negative throughout the
ties. In order to avoid restrictive assumptions about the gensgmple.

eral form of the density dependence of the viscosity, we shall Both equations involve the explicit form of the density

oxy=1(p,T)y=const., (20)

write, in general, dependence of the viscosity(p, T), for which no explicit
functional form is available to us. At first sight, it would
_ 12 seem hopeless to obtain a full expression of the temperature
7(p,T)=n(p) ?Tllz, (14)  and velocity profiles. This is not the case. As we shall show,

a simple phenomenological picture, which emerges from the
o asymptotic forms ofp(p,T) as given in Eq(15), allows one

where the functionp(p) has the two limiting forms to overcome this problem and to obtain tractable expressions
for the temperature and mean velocity.

. 7o We proceed in two steps. First, we describe this phenom-

p~d3<p. pp)=——, enological “two-region” picture and obtain expressions for
(1_ﬁ> the velocity and temperature profile. Then, in a second step,
Pc we come back to a more general but formal solution of Egs.
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(19 and (20) (in the next section This general discussion We are now in a position to obtain an explicit expression
allows us to discuss the velocity dependences of the sheéor the temperature profile. For distances larger thanthe
forces. transport equation for the temperature ELP) reduces to

We start with the discussion of the temperature profile.
The role of the the nonlinear term, y in Eq. (19) is in fact i 1 P i _ 1 12_
physically quite simple to understand. It merely acts as a 3Y[)\Oml d? T2 0y T=€opuzg PT7=0, (21)
source(“heating”) term for the fluctuations: it is through this
nonlinear contribution that the flow creates the fluctuationgvhere the high-density expressions for the transport coeffi-
that couple back to the mean flow. However, this source terngients Eqs(18) has been used.
is only effective close to the wall as we show below. This AS shown previously, the pressufeis independent of,
simplifies considerably the picture for the creation and transS© One may rewrite Eq21) as
port of temperature. Basically, two regions can be treated 2

) . : d 1

separately: close to the moving boundary, fluctuations are —T2— T2=0, (22)
“created” through the nonlinear coupling to the flow; far ay g
from_ the bour)darles, inelastic dissipation dommat_es OVel \ cre s has the dimension of a length and is defined as
nonlinear heating, and the local temperature profile is deter-
mined entirely by the diffusion and heat-loss terms of Eq. 2\o
(19). 5= .

This separation may be understood on the basis of the €opo d
asymptotic behavior of the viscosity discussed above. INThe parameters, ande, are just numerical constants in the
deed, it is easy to show that far from the wall, the nonlinear,igh-density regime of interest to us. Therefore, one expects
term o,,y goes to zero faster than the dissipation terms to be of the order of a few-particles diameters. Note that
e(p,T)T in Eq. (19). Away from the moving boundary, the sincee, is proportional to 1 e? (with e the restitution co-
temperature goes to zero and the density goes accordingsfficient, the decay lengtl$ goes to infinity when the sys-
towards RCP. From Eqg€15) and (18), it follows that the tem become perfectly elastic, as one would expect. This
nonlinear term behaves in this region similar toequation has to be completed by boundary conditions for the
O')Z(y/n(p,T)ocT(ZIB_l)/z, while the dissipative term in this re- temperature at both Walls. At the moving wall, we 3éy)
gion scale with temperature agp,T)TT¥2 [where Eq. = To for y<yy, as discussed above. At the wall at rest,
(18) has been usddSince we anticipated that the exponentdeta'|ed experiments, as shown in Fig. 4, show that the tem-

B is larger than ondaround 1.75 as found experimentally, perature profile is compatible with a vanishing heat-flux con-

see below, the nonlinear term decays more strongly towarggdition dT/dy=0. (In general, one expects the boundary con-
ition for the temperature to relate the heat flux at the

zero than the dissipative one. On the other hand, the non"rgoundar 0 the product of the interfaiéapitza] resistance
ear term is relevant close to the moving boundary where th y P ) ) ap
and the temperature jump: Here, we just assume that the

\s/\r;ear tratteh '? -Ifatrrg];éor equwaler? tlg’ bthe den5|t?/t|s smalz)erth Kapitza resistance is very small. We shall come back to this
e note that if the exponer had been equal to one, bo h%oint in the next sectioh.

previous terms would havg been comparable and then t The solution of Eq(22) with these boundary conditions is
picture of two separate regions would not have been appro-

priate. Y<Yw, T(y=To, (24
Close to the walls, the full nonlinear equation including
the “heating” term should be solved. This is in fact not nec- I‘(H _y)
cos
1/2

(23

essary to make simple predictions for the rms- and mean-

velocity profiles. An inspection of the experimental profiles, Yo <Y, Tl’z(y)=T0 )
as presented in Fig. 3, shows that in the region close to the cosl’{ H_VW)
moving boundary, the temperature is roughly constant over a 6
small layer, several-particle diameters thick, with a thickness

that may be considered in a first approximation to be indeln this equation,H is the thickness of the shear cell. As
pendent of the shearing velocity. As a first step, we there- shown in Fig. 3, this result is in good agreement with the
fore assume in amd hocway that for distancey smaller ~ experimental data. We find thd#=4.7d andy,,=2.8d for

than a cutoff distance,,, the temperaturd is constant, glass spheres, but these parameters depend somewhat on the
T(y)=T,. In this pictorial view, the boundary layer corre- material properties.

sponds to the region where the nonlinear term is important. The mean-velocity profile can be obtained along the same
At this stage, the parametd@i, merely plays the role of a lines from the temperature profile of E@S5). Equation(20)
normalizing constant. We shall come back to this point ingives unambiguously the shear ratein terms of the tem-
much more detail in the discussion of the shear forces beperature profileT(y), since they dependence of the density
cause, while the precise value ©f does not influence the is already contained in the temperature through the equation
velocity profile, it does strongly affect the prediction for the of state, Eq(10). It seems at first sight difficult to make an
shear forces. explicit prediction for the velocity profile, since the explicit

(25
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T T T theory applied to the case of hard sphe43]. A possible
il reason for this difference could lie in the rotational degrees
« of freedom of the beads in the experimental system that are
95?’?% o absent from the mode-coupling estimate. By increasing the
age . number of degrees of freedom, an effective decrease of the
. shear viscosity could be obtained. We leave this question for

further investigation.

We emphasize that the observation of the scaling relation-

R ] ship betweeny and T¥2 is not restricted to our system. We
57 have applied the same procedure to the data of Hostell.
[44], which were obtained in a 2D system of photoelastic
disks: for the 14 different densities studied in this paper, a

-2 -1 similar scaling relationship between the 108, ,,s andy is
logy, 7/(U/d) measured. An exponeat~0.5 is obtained, yieldingg~ 1.5
) ) . for that experiment. Moreover, both the mean and fluctuation
FIG. 10. Connection between the local rms-velocity ﬂUCtuat'onsprofiles obtained by Howelét al. can be fitted within the
and local shear ratesame symbols as for Fig).2 ocal fluctuations resent paper. This observation seems to indicate that the
are fgund to_increa_se approximately as a power law of the IOC""Eoupling between mean and rms fluctuations, which is the
velocity gradient, with a power of 0.@lashed ling essence of our model is a general feature of the underlying
expression of the viscosity is not known over the full rangedyrgrﬂgsthoef t:fpg:]aerr\];leit; rg:':grr:\?ilﬁe d, the velocity profile

. densmgs. Hovyever,_the two regions” picture, Wh'Ch may be obtained by integration. In the boundary layer for the
emerged in the discussion of the temperature profile, is rel:

evant for the mean-velocity profile, as well. Far from the (€Mperature ¥<y,,), the temperature is assumed to be a

wall (i.e., fory>y,,), the temperature decays to zero and theconstant; Eq(20) then shows that the shear rate is constant,

. . S . ielding a linear velocity profile. This observation is in
density goes accordingly to the RCP linhits shown in Eqg. yie . . ! :
(10)]. I);%his region ongeythus expects an “anomalous” gcal_agreement with the experimental velocity profiles, as can be

. . : : : een by a careful inspection of Fig. 2 fgxy,,. On the
E\g Ecig)th_(le_hduesns(;tgedﬁﬁggcfignie of the viscosity, according t(?)ther hand, fory>y,,, the velocity profile is obtained by
g ' ' Y= Yw integrating Eq.(27) together with the solutiori25) for the

o
I
>
%
1

log,, rescaled Vg,
Q
5

I
@
~2
o
I
|

m2/ p \8 temperature profile. The full velocity profile is obtained by
No—= (_ TV2y = Ty (26)  matching the two solutions &t, (where we assume continu-
d? \poT ity of velocity and shear rajeThe solution obeying no-slip

o _ _ _ _ ~ boundary conditions at both walls takes the form
It is interesting to note that this relation yields a scaling

relationship between the temperatufeand y that can be dy’ By’
tested experimentally. The previous equation may be rewrit- 0
ten in the form Viy)=U| I-—— |, (28)
f dy’ é(y’)
Oxy 1/2(28—1) 0
Y=l 55T : (27) _ o
. m ( P) where the functionp(y) is defined as
05 |
p
a1 Y<Yu. S(y)=1, (29
This power-law relationship has been checked experimen- H_ 28-1
tally, as shown in Fig. 10, where the local rms-velocity pro- cosl‘( )
file sV=(T/m)? s plotted versus the local velocity gradi-

(30)

entdV,/dy on logarithmic scales. Y=Y ¢(Y)= H-vyy
In this plot, a scaling exponent= 0.4 is obtained for the COS}‘( 5 )
glass bead system. This allows for an experimental determi-
nation of the exponeng for the “anomalous” divergence of When the valugBd=1.75 previously obtained for the ex-
the viscosity close to RCP. According to HG7), «a is iden-  ponentg is used, the theoretical velocity profile defined in
tified in the theory asx=1/(28—1), so thatB=1.75. The Egs.(28) and(30) is easily integrated numerically. The result
fact that this exponent exceeds unity seems to confirm thes plotted in Fig. 2 together with the experimental results. As
collective character of the dynamics in the granular materialcan be seen, good agreement is obtained with the theory.
However, we caution that the fluctuations could be underes- Although the two-region picture seems to be quite suc-
timated(see Sec. Il B, causing the relationship in Fig. 10 to cessful in describing the mean- and rms-velocity profiles, it
be affected to an extent that is hard to estimate. This value ofould be more satisfactory to have a full expression of the
the exponent is slightly smaller than the previously men-density dependence of the viscosity over the full range of
tioned result for3=2.58 obtained within the mode-coupling densities in order to integrate Eq4.9) and (20) explicitly.

011307-12



GRANULAR SHEAR FLOW DYNAMICS AND FORCES. .. PHYSICAL REVIEW E 65 011307

The two-region picture is to be considered merely as a N N H
simple and physically sound way of dealing with our igno- UXVZVUO(V’E
rance of the explicit functional dependence of the viscosity
on density. Its success indicates that the velocity profile does

not depend crucially on the details of this relationship. ~ Wheref, g, p, o are dimensionless functionst is the cell
width andd the bead diameter.

In this context, the Bagnold scaling results naturally from

the last equality in Eq(31), whatever the relationship be-
1. General discussion tweena,, and y is. The only important condition is that the

In his pioneering work, Bagnold measured the shear forcénicroscopic dynamics of the granular material only involve
in a Couette cell and found a quadratic increase of the she&inary collisions.
force as a function of the shearing Ve|ociﬁy(yocU2 [11]. Constant pressure results: Experiments performed in a
Using kinetic arguments, he proposed a phenomenologic&onstant pressure situation are more subtle to handle. The
relationship between shear stress and shear rate in the forifitroduction of a constant pressure in the system introduces a
04y> ¥?, which may be understood by assuming that the collime scale, name_lyr(]/Pd_)l’Z, which will compete with the
lision frequency between granular particles is fixed by thdime scale associated with the shearing velodfy). Thus,

shear rate'y itself. Subsequent experiments were performe ifierent regimes might be found depending on whether the

. : ime scale associated with the shear velocity is larger or
[8], which showed that the functional dependence of thesmaller than the one associated with pressure.

shear force as a function of the shearing velocity does de- how in the following that in the Situati f
pend on whether the system is allowed to dilate or not: when We show in the fo owing that in the situation o cqnst_ant
the system is sheared at constant volume, the shear force pressure, a shear force independent of shear velocity is ob-

found to be proportional t&? (i.e., the Bagnold scaling t'aslqed at I?rgedsh(taaring”vekl)cit%/_, while a velocity weakening
when the system is allowed to dilate, the shear force is foun(F9'Me 1S found at smaf velocilies.

to be independent dfl. In the present geometry, the material

is allowed to dilate and a solidlike friction force, i.e., ap-
proximate independence bf, is found.

It is tempting to ascribe the solidlike behavior to a solid In the previous section, the experimental mean- and rms-
friction force existing between granular particles at contactvelocity profiles were reproduced by using a simple “two-
On the other hand it is difficult to reconcile this behavior regions” picture, which allowed us to overcome our lack of
with constant-volume Bagnold scalingxyocuz, whose ori-  knowledge of the full functional dependence of the viscosity
gin is purely kinetic. Here, we shall show that both behaviorson the density. However, the shear force originates in the
may be accounted for within the hydrodynamic model weinteraction between the wall and the fluid particles adjacent
have introduced. to it. Therefore, one needs a good description of the region

Constant volume results: It is evident that the Bagnoldclose to the wall in order to get valuable information about
scaling,oxyocuz, originates from a general dimensional ar- the shear forces. This requires a careful analysis of the non-
gument, whatever the local relationship between shear stre§igear “heating” term in the equation for the temperature,
and shear rate is: In other words, tgeobal scaling o,y Eq. (19), which we perform in this section.

«U? obtained in a constant volume experiment does not nec- We first present an approximate, qualitative argument that
essary imply that théocal relationship isc,x y?. The rea- helps explain physically what quantities control the friction
son is very simple. Let us consider a systemNoinelastic ~ force in the shearing experiment. We then present the full

)mUZ, (31)

D. Towards “solidlike” shear forces

2. Shear forces at constant pressure from the hydrodynamic
model: Qualitative

hard spheres contained in a plane Couette ceffiagd) vol- ~ @Pproach, which clarifies the crude approximations made in
umeV. The bottom boundary is moving at a constant veloc-the qualitative arguments. _
ity U, while the upper boundary stays at rest. The shear force is defined in the hydrodynamics model as

In this case, the only microscopic velocity scale enteringtn® viscosity times the shear rate, both evaluas¢dhe
the dynamics i4J, the velocity of the moving wall. In other Poundary Using the expression for the viscosity, Ed4),

words, all dynamical quantitiesnay be written in terms of this yields
the shear velocity only, which fixes the only time scale in

the problem. From the analysis of the fdlibody dynamics, poTo| mt2 .
ny:;( )_To Y

= 32

one thus concludes in general that 5

0
Vi) ( y N ﬂ)
U d'v'd/)’ We need a second equation giving the temperature at the
boundaryT,. In the “two-regions” picture we introduced
T(y) _ Y ﬂ ﬂ) above, the temperature is created near the boundary and then
mu? 9 d'v'd)’ transported to the rest of the system In this picture, the tem-
peratureT, merely comes from a balance between the dissi-

pation rate close to the moving boundaryeT, and the

N (N H
P=—p(—,— muU?, o . o
AYARRYAN:! heating term,” oy, ¥|o. Together this gives
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analysis of the nonlinear set of equations for temperature and
PTS?, (33)  velocity, Egs.(19) and(20). Here we present the full analy-
1/2d . . . . .
m sis. In order to simplify the discussion, we assume that the
granular material is semi-infinite, 1.e., the cell widthis
larger than the decay length for temperatéréefined in Eq.

€0

ny:)’|0:

where we have used the expression in @@®) for the dissi-

pation ratee. 23,
The shear ratg/|, may be eliminated from the two previ- e proceed in two steps. First, we obtain two closed im-
ous equations, Eq$32) and(33), to give plicit equations for the temperature at the boundary) (and
112 the shear stress from an analysis of Eq919) and (20).
Ixy _ (34) These equations are written in terms of the general form of

P the viscosity, Eq(14). Then in a second step, we discuss the

€0 poTo| pPoTo
ped®”\ PP
) ) o different limiting behavior for the shear stress as a function

. Now, depefndm_g on the ratjeyTo /P, two limiting behav-  f the shear velocity) (“large” and “small” velocities).
lors are obtame_d. _ ) o (a) First condition definingl, and oy, : We first rewrite

(i) If pgTo/P is large, then the viscosity takgs its interme- the full temperature equation EGL9), in terms of the ex-
diate density expression in Eq.15), #(poTo/P)  pressions for the transport coefficients EGs) and(12),
=1oP/pgTo. In this limit, one then obtains from E§34)

2
Oyxy=toP, (35 i o Li N 2
ay m1242 poTY2 3y - 12
with wo=€qno/pod® a dimensionless constant. In other 77(;3)?T1’2

words, the shear force is expected to be independent of the

shear rate and proportional to pressure, as is usually found in 1

solid friction. ~ €0y PTY2=0, (39)
(i) If poTo/P is small, then the viscosity takes its high m

density expression in Eq15), 7(poTo/P)=n1(P/poTo)”?

and Eq.(34) gives which can be rewritten as

B-1112 52 T 1
Oxy | €071 P T2y S — . Tl2— (40)
P B pods(poTo> (36) Wz 5277(p)-|—l/2 EZ !

The temperatur@&, enters explicitly in this formula. It has to
be obtained as a function of the shearing velotity This

may be accomplished using the energy balance discuss ore conveniently a'3"3=(P/po)(oxy/P)z(pod:‘/eo), if we

above, which results in Eq33). In this equation, one ex- se the explicit expression hich has been aiven in E
pects the shear rate at the boundary to be roughly given by XpICE &xp lon of whi given in £q.

ylo~U1/, where/ is a distance typically of the order of a %/23)' It is important to note that the termi p(y)] is a func-

) . D : ; ; . < tion of T(y) only through the equation of state, E§). Let
few diameterdthis point is confirmed in the full discussion ¢ introduceu= (T/m)~2, which has the dimension of a ve-
to follow). One thus gets

locity. A first integral of Eq.(39) may be obtained using a
standard recipe of classical mechanics: we multiply B)

where we have introducetiy= 6%0;,pod*/(2\P), a quan-
tity with the dimension of a temperature; It may be rewritten

d . )
T8~ (%‘y 7m1’2U, (37) by du/dy and integrate oven. We obtain
7y
which still depends on the ratio between shear siggsnd 1/du)? f” u_s 1 L ek
pressurd®. Combining this expression fdr, as a function of 2\ dy 0 M& pipomuPyu’ 268 '
U andoy,/P and the formula fowr,, /P as a function ofl, (41)
in Eq. (36) yields the final result
pomU?\ 1= 5125 Note that the density dependencey_;ﬁo) has been rewritten
Ty 111P 0 ) , (38 in terms of its dependence am=(T/m)*? thanks to the
P equation of state Eq.10). The parameteE is a constant,

where we have introduced the dimensionless constan¥vhiCh in the mechanical analogy, fixes the “energy” of the
p=[ €0y pod?(dl/ L ByL- B2, System. We now introduce the effective “potentia¥(u)

. defined as
The crossover between the two regimes occurs at the

“critical” velocity U, defined adJ .~ (P/mpo)*2 T L L
u
V(u =f du'— — —5U% (42
( ) 0 m62 n(pomu,zlp)u, 252 (

3. Shear forces: Quantitative

These results obtained from the arguments of Sec. VD 2
are in fact fully confirmed by a more detailed and carefulwhich allows us to rewrite Eq41) as
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sign to emphasize the different behavior\tfu) in the dif-
ferent limits, but the discussion does not depend on this par-
ticular choice.

The “energy” E in Eq. (41) may be computed from the
boundary conditions. As already mentioned, we assumed a
semi-infinite system in this section to simplify the discus-
sion. At infinity, both the temperature and its gradient are
expected to vanish, and so doesdu/dy—0 and u—O0.
Consequently, the “energyE is obtained to be zerd&=0.

This imposes the temperature at the boundard/,zml,%,
which has to satisfy

Yo
\_/ ) L(du)?
2\dy

FIG. 11. Typical behavior of the potenti®(u) as a function As we mentioned briefly.ih Sec. VC, one expects, in general,
of u. that the boundary condition for the temperature relates the

temperature gradient to the temperature at the boundary, in
2 the form

+V(u)=E. (43

—_
=

S

>

+V(ug) =0. (47
y=0

1( u
2\dy o dT
Y

=RkTly-o0, (48
The behavior of the potentidl(u) can be obtained by ana- y=0
lyzing the two limitsu—0 andu—-oc. The limit u~0 cor-
responds to small temperature, i.e., densities close to RC
According to the expression of the viscosity close to RCP,
Eq. (15), the first term in the potential in E§42) behaves in
this limit similar to

}yhereRK is a phenomenological parameter, usually denoted
as the Kapitza resistance. The ratiq = xk/R¢ has the di-
mension of a length. Following the same arguments that led
us to the expression of the thermal conductivity, B@), R¢

is expected to be proportional to the fluid-wall collision fre-
quency, i.e., tdP/[ poTY3(y=0)]. The length/y is thus ex-

f”du, Ts _ 1 pected to be independent of pressure, and only fixed by the
o M H(pemu'YP)u’ “microscopic” quantities such as the diameter of the par-
5 5 ticles and the roughness of the walls. Rewriting &) in
_Td (@) fudu/urZﬁflm u2h terms of the fieldl, we find the condition for the temperature
~ pm3/26%\ P 0 ' at the boundary

(44) 1,
_ _ _ _ 5 72U5+V(Ug) =0, (49)
This term vanishes more rapidly than the last, quadratic term i
of V(u) (since the exponent verifigg>1). Therefore, close ... ~_, ; ;
0 u~0, one has/(u)= — (1/28%)u?. with /'=2/« . Using Eq.(42) for V(u), we obtain
In the limit of largeu, i.e., high temperature and interme-

: : ; 1/1 1 u T 1
diate density, the integral term M(u) behaves as Z — 2 S
y g (u) 2(72 = |uo+ JO du—s T 0, (50)
v, Ts 1 v poTs , 2
f du P T T du g2y where we recall thatTo=muy; and Tg=(P/pg)(oyy/
0 n(pomu’</P)u 0 7o P)2(pod®/ €p).
poTs U2 It is interesting to note that, since the second term in Eq.
= == (45 (50 is positive, the first term has to be negative, so that
7P 28 > 4. In the opposite case, the only allowed solution to Eg.

(50) is Ty=0, i.e., no temperature is introduced in the sys-
tem. This condition is in some sense expected? ifjoes to
zero, the boundary condition for the temperature at the wall
Eq. (48) imposesT,=0, so that no temperature may be in-
(46) troduced in the system. Physically,is related the amount of

energy input at the boundary, whil® has to do with the

dissipation[see Eq.(23)], so the condition/>& may be
Thus, depending on the sign of the first factor on the rightunderstood as an energy balance condition: if not enough
had side of the equatioW,(u) goes to plus or minus infinity energy is introduced in the system at the boundary, the dis-
whenu—, In Fig. 11, we have arbitrarily chosen a positive sipation is too strong to allow flow.

which, when combined with the second term in E42),
gives

poTs
7oP

UZ
V(U)= - ﬁ
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(b) Second condition defining, ando,, : A second con- Oxy= MdP, (57)
dition relatingo,, and T, may be obtained by formally in-
tegrating the momentum equati¢20): with wg={7n0€qo/pod(1— 8% /?)}*2.
0 Although the model we have developed is purely a hydro-
Y 10xy / dynamic model, this relationship is usually referred to as
V = —_ 1 )
{y)=U f on(p,T) Y ®D  solidlike behavior.

The temperature at the boundary may be obtained from
where we used the fact that, <O to replaceo,, by the second condition E¢54). The integral on the right-hand
_|0'x.y!- As y—, the velocity goes to zero, so one gets theside of Eq.(54) is dominated by the behavior near=uj,
condition with 77(pemU/P) =P/ pomu? andV(u)=V(ug) = — u2/2/2.

One thus gets

[~ |O'xy| ,
U—f ( T)dy. (52) |
o 7P _ O'Xyd2 i Yo MpoU _ gy 1/2p0d2/u
The explicit form of they dependence of density and tem- mY2 UoJo nP P 270
perature is not known explicitly, but may be obtained for- (58)
mally from the first integral obtained previously, E@t1)
(with E=0). The latter yields an implicit condition for the Which gives eventually
field u as
To=mu={;mU?, (59)
du
dy=— \/: (53)  where the numerical prefactory is defined as ¢4
—2v =[270/(papod®/) 1™

This shows that the large velocity regime that we defined
as To>P/py ratifiesU>[P/(umpo) 1¥?~ (Pd®/m).
(ii) Small velocity limit; In this case the viscosity is ex-

which allows us to rewrite the second condition E8p), in
terms of »(p,T) only

y |0y 12 J'uo 1 du 50 pect?g/ to g))eﬁhallveth_“alnoTa}[Irc]JUSf_ly,’; Witdht;_(PorEUEég))
= = , = n,(P/pomu?)”. In this limit, the first condition, Eq(50),
M Jo n(pomu?/P)u —2V(u) then takes the form
Wh‘I?LeeTVSopg;ir:tI%Vn(: )Elqss{glov)egnlg (Iég).(;zgrinciple allow o:E i_ i WPt f ”Oﬂ Ts (mpou?\? 0
2172 8)7° Jo umps P

both T and oy, to be determined in terms of the pressire
and velocityU. ) ) )
(c) Limiting behaviors of the shear forces: Two limits of Which can be reorganized to give
the previous equations may be discussed for large and small 5 1o 2\ 1- l2
shear velocity limitJ (we shall specify below what we mean 5_ Bni€o poMU
by “large” and “small”). /2] pod® P '
(i) Large velocity limit: Let us assume that the tempera-
ture at the boundary, satisfiesT o> P/p,. This corresponds This equation has to be completed by the second condition
to the large velocity limit. In this case, the density close toEq. (54). In this equation, the potential tervi(u) may be
the wall is intermediate and the shear viscosity takes its Enapproximated by (u)=(1/26%)u?, since the temperature
skog asymptotic expression, as quoted in Efj$) and(15): =mu? is small(see the discussion of the shape of the poten-
;(Pom WIP)=P/pomu2. tial in the previous subsectipriTogether with the asymptotic
In Eq. (50), corresponding to the first condition, the inte- expression of the viscosity in this limit, one may rewrite Eq.
gral is dominated by its large behavior, where the function (54) as

7 behaves similar tay(pom U/ P)=(P/mpy)u~2. To a good

oy =P|| 1- (61)

approximation, the first condition then takes the asymptotic nydz uo( Mpo) # 26-1
form U= — u y (62)
m7]1 0 P 5
—u
1( 1 1) 2, [0y Ts pou 0 - 5
2\ 727 31 f VS P
0 0 which yields
which may be rearranged to give _
B P 1/2ﬁ Pod25 pom UCZ)) 2B-1/2 (63)
“ilmpy) P 2B-11 P '

e CLEN P S (56)
27T ) 0T
When combined with Eq(61), one gets the following

Using the expression fofg, one gets relationship between shear stresg, andU :
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Mpo 1-BI2B
Oyy= ,LLWP: UZ(T) ] ) (64
The temperature at the boundary is then given as
P mpO 1/28
=70 —1 U2 =
To éwpo[u( P)] : (65)

where the two numerical prefactoys,, and ¢\, are de-
fined as uw=[(1-5%/?)(eo/pod®) Bni]®* D' (28
—1Upd?8) = A'E and {yw=[ (28— 1)/ (mwpod®8) ]V~ 1).

The stress crosses over from its low velocity power-law in

PHYSICAL REVIEW E 65 011307

to allow measurements of both shear forces and “micro-
scopic” dynamics of individual particles. The latter measure-
ments were performed by tracking the instantaneous posi-
tions of particles on the upper surface using a fast camera
and an imaging procedure. A variable upward air flow
through the granular material allows the internal pressure to
be adjusted. Experimentally, the following results were
found: (i) granular flow is restricted to a small region close to
the moving boundary(ii) the normalized velocity profile is
independent of the shearing velocity, pressiue, airflow),

and of the type of motion of the moving cylindéstick-slip

or continuous sliding (iii) the shear force acting on the

velocity behavior to its high-velocity constant value atMOVing cylinder is independent of the shearing velocity and

U~U.=P/(mp).

A crucial feature of thdJ dependence of shear stress in

this regime is that it isvelocity weakening i.e., the shear
stress decreases with increasity for U<U_. because
B>1.

4. General remarks about shear forces at constant pressure

proportional to pressure, as shown in the planar geometry in
[36]; (iv) there is a close connection between local fluctua-
tions and mean flow, as manifested in the apparent power-
law relationship measured experimentally between these two
local quantitiegFig. 10); (v) the rms velocity profile decays
more slowly as a function of the radial coordinate than does
the mean-velocity profile. However, we have cautioned that
the functional form of the fluctuation profiles could be af-

Before ending this section, we would like to emphasize gected by frame rate limitations. We find that these general

few points:

features occur for several different types of particles, though

We have identified two regimes in the shearing velocitythere are quantitative differences.

dependence of the shear force. Borall velocitiesthe shear
force is velocity weakeningas obtained in Eq(64). For
large velocities the shear force is found to bes¢lidlike”

On the basis of these observations, we have proposed a
“hydrodynamic” model for the granular flow, in which the
granular material is assumed to behave similar to a locally

i.e., independent of the shearing velocity, and proportional tqyewtonian fluid. In contrast to “classical” fluids however,

pressure, as shown in EG7).

the temperature and density of the material are not constant

The cross-over between one regime and the other is foungyer the shear cell. The temperature, defined in terms of the

to occur at acritical velocity, U= (Pd%/m)Y2.

fluctuations of the velocity, is created at the moving bound-

In the velocity weakening regime, i.e. for velocities ary and propagated through the material. The temperature
smaller tharlJ.., the steady sliding regime is expected to beprofile thus results from a balance between heat flux and
unstable. Indeed, agoy,/dU<O0, the steady sliding situa- |ocal energy loss due to the inelasticity of collisions. As a

tion is unstable to small fluctuatiorisee Refs[45,46| for a
full discussion. As a result, one might expect stick-slip

behavior of the system for dU.. Note, however, that the

consequence, the density and temperature dependences of
the transport coefficients play a crucial role.
In the high-density regime under consideration, simple,

present model cannot be used to describe the whole stick-slgsymptotic expressions for the transport coefficients may be
cycle since it is expected to fail at a vanishing velocity, i.e.obtained within the Enskog approximation. The latter is
during the stick period. How this prediction relates to thehowever expected to be invalid for the density dependence of
stick-slip to steady sliding transition will require further the viscosity at very high densitigslose to random close

study.

packing, RCP where collective rearrangements comes into

Finally, it is interesting to note that both the large andplay. This led us to assume a stronger divergence of the

small U limits of the shear rates Eq$57) and (64) are in

viscosity as a function of the density close to RCP. In a

agreement with our previous dimensional analysis of the dymanner analogous to what is usually proposed in super-
namics in the constant volume ca@ee Sec. VDL Since  cooled liquids, we have assumed an algebraic divergence of
on dimensional grounds the pressure should be proportionghe viscosity near the RCP density. Using the equations of
to U% when the volume is fixed, one finds that both expres-ransport of momentum and heat, we then compute the mean
sions reduce to the Bagnold scaling,U?. We emphasize and rms-velocity profiles. Those are found to be in very good
that this “global” scaling holds even if the local Bagnold agreement with the experimental results. Moreover, the scal-
relationship o> ¥% is not expected to hold in the small ing law relationship between the mean- and rms-velocity
velocity regime (where the viscosity exhibits an “anoma- profiles that is found experimentally is also predicted from
lous” behavioy. the model; though the experimental results may be affected
by frame rate limitations of our measurements.

Finally, the velocity dependence of the shear force is de-
termined. Two regimes are predicted, depending on whether

In this paper, we have investigated both experimentallythe velocity is larger or smaller than a critical veloclty,
and theoretically the shear dynamics of granular flow. The=(Pd®/m)*2 For large velocities, aolidlike friction force
granular material was sheared in a Couette cell, instrumented predicted, i.e., independent of the shearing velocity, in

VI. CONCLUSIONS
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agreement with the experimental observation. For small veedology make a direct comparison between the experiments
locities, avelocity weakeningegime is predicted, consistent difficult.
with the occurrence of stick-slip motion in this case. We The main point of the present paper is the agreement be-
emphasize that these results are found within the hydrodyiween our measured velocity profilés particular the con-
namic model, even if no solid friction force is assumed tofinement of velocity gradients to a thin shear bpadd fric-
hold between the grains. Of course, we expect the model t#on force and the predictions of a Newtonian hydrodynamic
fail at sufficiently smallU as the static regime is approached. model with a strong density dependence of the viscosity
In our paper, we have assumed that the flow on the uppéfken from models of the glass transition.

surface is close to that within the interior of the Couette cell, . Many questions are still open. One important problem,
as found in earlier work3]. However, since the particles on which is not discussed here, is the temporal response of the

the surface are less constrained, their fluctuations could b%ystem when a velocity step is imposed. Such an experiment

somewhat different from those in the interior, even when weWOUId provide information about the transport mechanism

apply a downward pressure through an airflow. While MRvaithin the granular material. The response may be predicted

and x-ray measurements in the interfi8 could not resolve n p_rinciple from the hyd_rodyngmic model and could provide
fluctuations, recent measurements of fluctuations on th&" independent test of its validity.
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