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Granular shear flow dynamics and forces: Experiment and continuum theory
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We analyze the main features of granular shear flow through experimental measurements in a Couette
geometry and a comparison to a locally Newtonian, continuum model of granular flow. The model is based on
earlier hydrodynamic models, adjusted to take into account the experimentally observed coupling between
fluctuations in particle motion and mean-flow properties. Experimentally, the local velocity fluctuations are
found to decrease more slowly with distance from the shear surface than the velocity. This can be explained by
an effective viscosity that diverges more rapidly as the random-close-packing density is approached than is
predicted by Enskog theory for dense hard-sphere systems. Experiment and theory are in good agreement,
especially for the following key features of granular flow: The flow is confined to a small shear band,
fluctuations decay approximately exponentially away from the sheared wall, and the shear stress is approxi-
mately independent of the shear velocity. The functional forms of the velocity and fluctuation profiles predicted
by the model agree with the experimental results.
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I. INTRODUCTION

The general features of granular shear flow have b
investigated thoroughly over the last several years@1,2#. The
following key points emerge in shear flow experiments o
large range of materials in two and three dimensions:

The velocity of particles decreases quickly over a f
particle diameters away from the shearing wall~see, e.g.,
@2–4#!.

~i! The velocity profile, normalized by the shear veloc
U, is independent ofU ~see, e.g.,@2,3#!.

~ii ! The shear forces is approximately independent ofU,
if the granular material is allowed to dilate~see, e.g.,@8#!.

~iii ! These features, together with the discovery of stro
inhomogeneities in the force distribution even during flo
@2,9#, might be taken to indicate that any continuum a
proach, such as local hydrodynamic models, should fai
describe granular flow.

Here, we revisit the assumptions made in earlier hydro
namic models of granular flow, via careful comparison to
experimentally measured microscopic particle dynamics
circular Couette geometry. This leads us to emphasize
strong interplay between local rms fluctuations, the me
flow, and the local density. When this coupling is prope
taken into account, a hydrodynamic model, which we ha
introduced in Ref.@10#, quantitatively describes all key prop
erties of granular shear flow discussed above, including b
flow properties and shear forces.

The shear force obtained from the hydrodynamic mo
resembles the simple dynamic friction law found in solid-o
solid friction, i.e., the shear force is proportional to pressu
but approximately independent of shear velocity. We emp
size that this result is obtained even though the hydro

*Present address: Dept. of Physics and IPST, Univ. of Maryla
College Park, Maryland 20742.
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namic model does not include frictional forces betwe
grains.

The temperature is defined here as the mass times
square of rms-velocity fluctuations. While the temperature
a constant in shear flow of an ordinary fluid, granular te
perature is dissipated through inelastic collisions. Its spa
variation plays a crucial role in determining the properties
granular flow. We find that the granular temperature profi
normalized by its maximum value, is roughly independent
shear velocity and pressure. Temperature is introduced
the system via viscous heating over a characteristic lengt
the order of a few particle diameters. It is then dissipated
inelastic collisions over a longer length scale. Our mo
contains a description of the source and transport of fluc
tions that allows us to predict the pressure and the sh
velocity dependence of both the shear forces and the par
dynamics.

In the experiments reported here, which go beyond th
reported earlier@10#, the granular material is sheared in
Couette geometry with a rotating inner cylinder and a s
tionary outer cylinder. The inner cylinder is connected to t
motor through a flexible spring that allows either stick-s
motion or steady shearing depending on parameters. We
also apply an upward air flow at a variable rate through
granular material to dilate the material and reduce
stresses. Our ability to vary the stresses via air flow, and
study of both stick-slip and steady dynamics in the sa
apparatus, distinguish this paper from other experime
measurements of sheared granular matter@3,2#.

In addition to performing force measurements, whi
probe macroscopic material properties of the ensemble
particles, we determine the dynamics of individual partic
by measuring the mean-velocity and rms-velocity fluctu
tions of particles on the top surface of the granular layer. T
combination of velocity and force measurements, toget
with variation of the stresses and the time dependence o
flow, allow for a very sensitive test of our theoretical mod

d,
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Previous experimental results and modeling approac
are reviewed in Sec. II. Our experimental setup and res
for the particle dynamics and shear forces in sheared gr
lar matter are discussed in Secs. III and IV. In Sec. V,
locally Newtonian hydrodynamic model is described in d
tail. We conclude in Sec. VI with a discussion of the ma
results and the broader implications of this paper.

II. BACKGROUND

Efforts to understand particle dynamics during granu
flow may be roughly divided into adaptations of continuu
models, based on hydrodynamic or elastoplastic descripti
and models that emphasize the differences between mo
lar fluids or solids and granular matter, such as the inhom
geneous character of particle contacts and of stress trans
sion in a granular material. In this section, we review brie
these different approaches. We conclude with a discussio
the aim of our hydrodynamic model in the context of pre
ous work.

A. Continuum models of granular flow

Hydrodynamic models were motivated by Bagnolds p
neering theoretical and experimental work on shear force
dense suspensions@11#. The constitutive equations for mac
roscopic quantities, such as the shear stress as a functio
shear rate, were investigated in several studies of dense
pensions with fixed volume. In the limit of large velocitie
Bagnold found that in a fixed volume, the shear stresss is
proportional to the shear velocityU squared. He referred to
this regime as the ‘‘grain inertia regime.’’ He accounted f
the measurements by assuming that the local shear stres

was proportional to the square of the local shear rateġ. He
justified such a relationship on the basis of kinetic arg
ments. Since direct measurements of microscopic par
dynamics were not available, he assumed a linear velo
profile similar to that of ordinary fluids.

The development of hydrodynamic descriptions, extrac
from the ‘‘microscopic’’ dynamics using kinetic theory, wa
pioneered by Jenkins and Savage@12# and by Haft@13#. A
considerable amount of theoretical, numerical, and exp
mental work has refined and modified this approach.
views of models of granular flow that describe many of the
studies has been compiled by Campbell@14#, Savage@15#,
and more recently, by Clement@1#.

In the kinetic theory approach, the granular material
generally modeled as an inelastic hard-sphere system. C
stitutive equations similar to the usual Navier-Stokes eq
tions of hydrodynamics may be obtained in the limit of sm
inelasticity. The transport coefficients entering the flow eq
tions are usually computed at the level of the Enskog eq
tion @38#, an extension of the Boltzmann equation that tak
the finite size of particles into account but neglects corre
tions between collisions. Due to the assumptions that e
into the kinetic theories presented above, these descript
are limited to rapid granular flows and to intermediate
low-particle densities.
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In order to understand the boundary between a seemi
flowing state and an apparently stationary state, various
tensions of the previous hydrodynamic model have been
posed. Jenkins and Askari@16# have studied the interfac
between a flowing region and an amorphous~high-density!
region that is at rest. In this paper, the thickness of the sh
band is determined by the balance between the energy i
and the loss rate due to inelasticity. On the other hand,
coplastic models have been proposed. The Savage-H
model @17# uses the Mohr-Coulomb failure criterion to pre
dict the transition from solidlike to fluidlike behavior in th
context of avalanching and rock slides. The constitutive
lation connecting shear stress to shear rate is of great pr
cal importance. Different relations have been proposed
various situations, and several are summarized in a tabl
@18#.

B. Alternative descriptions of granular flow

Beyond measurements of the mean properties~such as
shear forces! that are important for a continuum model, r
cent experimental and theoretical studies have focused
measurements of the particle dynamics and shear force
the scale of an individual particle.

Detailed measurements of the particle dynamics~see, e.g.,
@2–4#! revealed that in several experimental geometries p
ticle motion is confined to several~generally 5–10! particle
diameters close to the sheared surface. The velocity profi
found to be roughly exponential or Gaussian.

Velocity fluctuations have been determined in den
granular flows in different flow geometries. Space-averag
velocity fluctuations were measured with high-tempo
resolution in the interior of a granular chute flow usin
diffusing-wave spectroscopy@5#. Fluctuations at the level o
individual particle motion were determined using video im
aging of tracer particles@6#, though the video frame rate ma
not be sufficient to capture all fluctuations between collisio
@5#. High-speed digital video imaging was used to determ
velocity fluctuations in a vertically vibrated granular mater
@7#.

The force distribution within a granular assembly, me
sured with birefringent disks@19# or carbon paper@20#, was
found to exhibit strong inhomogeneities on the particle sca
Stresses were found to be transmitted along chains of
ticles ~force chains! in a static granular assembly and durin
shear.

There have been several attempts to account specific
for these inhomogeneities in granular flows. Some
proaches describe the flow properties on the basis of frac
models @21,22#, while others introduced nonlocal constitu
tive equations coupling force chains to flowing grains@23#.

The shear strength of deformable, inelastic spheres
modeled using a discrete element method by Aharonov
Sparks@9#. The density is found to adjust to a critical densi
within the shear band.

C. Our hydrodynamic model

While theories and models of granular flow have beco
remarkably detailed, the assumptions of each model m
7-2
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GRANULAR SHEAR FLOW DYNAMICS AND FORCES: . . . PHYSICAL REVIEW E 65 011307
strongly influence the results. As noted by Campbell@14#,
detailed experimental measurements of particle velocit
granular temperatures, and densities were often unavail
when models were developed. The measurements repo
here should help assess the validity of the assumption
various models.

Here, we revisit the local hydrodynamic model and ca
fully reexamine the assumptions made to derive the con
tutive equations in view of our experimental measureme
of individual particle dynamics and mean shear forces.

The mean shear forces have been studied before in
experimental system similar to ours: Tardoset al. @8# inves-
tigated the effect of an upward air flow through the granu
material on the shear forces. The shear force was foun
decrease linearly with air flow. On the basis of Bagnol
results@11# and much subsequent work, it is clear that di
tancy has an important effect on granular flow. This was a
convincingly demonstrated in the experiments by Tard
et al.: If the material is allowed to expand, the shear stres
independent of shear velocity. On the other hand, if the m
terial is confined to a fixed volume, Bagnold’s result of
quadratic increase of shear stress with shear velocity
found.

The interplay between dilatancy, fluctuations, and flow
complex. Theoretical investigations have not yet produ
results that are consistent with measured mean~macroscopic!
properties and measured dynamics at the particle~micro-
scopic! scale. Granular material develops a greater resista
to flow as its density increases. Previous theoretical tr
ments of granular flow have either been restricted to
lower-density rapid-flow regime@1#, or they have incorpo-
rated a yield threshold~viscoplastic models! that produces a
well-defined transition from liquidlike to solidlike behavio
@17#.

Recent experimental studies of granular flow down
sandpile by Komatsuet al. @24# using a long exposure-tim
video imaging have revealed that the transition between
idlike and fluidlike behavior may not be very well define
The velocity profile within the flowing layer was found to b
exponential over more than seven orders of magnitude
speed with no clear transition to a solidlike state. These
sults indicate that no strict transition may exist, but inste
one may be able to treat the solidlike state as a very h
viscosity fluid.

As emphasized in the literature review given in Sec. I
and II B, two alternate directions may conceivably be f
lowed in order to describe granular shear flows in the hi
density, finite-velocity regime. One might try to extend qu
sistatic descriptions based on friction and elasticity to
finite-velocity case. Alternately, one may start from a hyd
dynamic model, which is appropriatea priori in the high-
velocity collisional regime, and modify it to ensure that hig
density effects are properly taken into account. In the pres
paper, we have chosen the second route, and we show
the inclusion of such high-density effects allows for a coh
ent description of various experimental results for sh
flows. Although the model does not include solid frictio
between the grains, friction forces will in fact become im
01130
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portant in the quasistatic limit, where contacts endure and
model is expected to fail.

Previous approaches@12,13# have used the Enskog kineti
theory to derive the hydrodynamic equations appropriate
describe granular material in the collisional regime. The
approaches correctly take into account the excluded volu
between colliding particles. However, since they are ba
on a Boltzmann-Stosszahlansatz assumption, they neg
any correlation between encounters. Such an assump
breaks down at large densities where correlated motion
particles occur, e.g., through cooperative rearrangement
elastic systems~i.e., those without energy loss during coll
sions!, the viscosity is then found to exhibit an anomalo
divergence with density in the high-density limit@26–28#.
The divergence with density is roughly equivalent to the
vergence with decreasing temperature for a supercooled
uid close to the glass transition@29#. Such anomalous effect
are expected to occur in granular material close to the r
dom close packing~RCP!, which is experimentally found to
be 63.7% for slightly polydisperse systems@25#. For a wider
distribution of particle sizes, larger densities can be reach

In our paper, we explicitly include such high-density e
fects in the hydrodynamic equations. This leads to theoret
predictions in quantitative agreement with most of our e
perimental results. It also provides a direct connection
tween the dynamics of granular media and glasses, as
been proposed by Liu and Nagel@30#.

III. EXPERIMENTAL SETUP

A. Apparatus

In the experiments, we shear the granular material i
Couette geometry. The granular material used in most of
experiments reported here consists of 0.5520.95 mm diam-
eter black glass beads~from Jaygo Inc.! (rm52.55 g/cm3).
The color does not alter surface properties, but increases
opacity of the material, which facilitates the tracking of pa
ticles on the surface as described below. We also carried
experiments with a mixture of 1.3 and 1.6 mm chrome st
spheres (rm55.0 g/cm3), and with polydisperse, rough ce
ramic spheres~Macrolite ML1430 from Kinetico Corp.! with
diameter 0.8321.47 mm (rm50.51 g/cm3).

In the experimental apparatus, the granular materia
confined to a 12 mm gap between a stationary outer cylin
and a rotating inner cylinder (r 551 mm), as shown in Fig
1. The gap can be reduced to 3 mm. The inner cylinde
hollow to reduce its inertia and is coated with a monolayer
randomly packed glass beads to provide a rough bound
The outer glass cylinder is coated with a monolayer of r
domly packed glass beads up to the height of the top surf
which allows observation of the top layer of grains through
mirror as shown in Fig. 1. The lower 38 mm of the inn
cylinder is stationary in order to minimize boundary lay
effects.

To shear the material, the inner cylinder is rotated with
4000 step/turn microstepping motor~from Aerotech Inc.! at a
variable rate of 0.00121 Hz. The rotation rate is smoothe
by a 100:1 gearhead for rates,1 Hz. The rotation ratev of
the cylinder imposes the shear velocityU at the boundary of
7-3
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BOCQUET, LOSERT, SCHALK, LUBENSKY, AND GOLLUB PHYSICAL REVIEW E65 011307
the granular material as throughU52prv, with r
551 mm the radius of the inner cylinder. The inner cylind
is connected to the microstepping motor via a flexible te
pered steel spring. This spring configuration allows us
measure instantaneous shear forces with excellent dyn
range and precision, since the spring bending is proportio
to the applied shear force. We measure the spring ben
with a capacitive displacement sensor~EMD1051, Electro
Corp.! that is rigidly connected to the motor shaft at a rad
distance of 4.2 mm from the shaft. The spring constant of
spring ~dimensions: 0.5137.53165 mm) was determined
to be 22068 N/m.

The soft connection between the motor and the inner
inder permits both stick-slip dynamics and continuous m
tion of the inner cylinder to be obtained, depending on
rameters. However, when a uniform speed of the cylinde
required for the experiment, the spring is replaced with
rigid connection. In that case, measurement of shear forc
not possible.

We may also apply an upward air flow at a variable r
through the granular material. The air flow enters the gra
lar material through a circular opening between the cy
ders, and leaves the granular material through a circul
symmetric opening at the top. This assures a uniform
flow rate throughout the material. Flow-rate uniformity w
tested by observing the position of air bubbles as they le
the upper surface of the granular material. Air bubbles fo
at high-flow rates in the class of granular materials used
this experiment. The random position of air bubbles indica
that the flow is uniformly distributed throughout the ga
Except for this test for flow uniformity, none of the exper
ments presented in this paper was carried in the presenc
air bubbling. The air flow is provided by a blower~Rigid

FIG. 1. Experimental setup: The granular material~between two
concentric cylinders! is fluidized by an upward air flow and sheare
by rotation of the inner cylinder, which is connected to the mo
through a flexible spring. Shear forces are determined from
spring displacement. Particle motions in the top layer are meas
through the glass outer cylinder with a fast CCD camera.
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Inc.! operated at variable input ac voltage. Flow rates
measured by means of an air velocity transducer~FMA 904,
Omega Inc.!. For the range of air-flow rates we employe
the average density of the granular material changes by
than 10% and the flow speed is calculated in first appro
mation assuming the porosity for random close packing.

Since the air flow exerts a drag on individual grains, t
effective weight supported by neighboring grains decrea
with increasing upward airflow. This effective weight of in
dividual grains, in turn, should be proportional to the pre
sure inside the granular material. We may, therefore, red
the pressure by applying an upward air flow, and incre
pressure by applying a downward air flow. The proportio
ality factor between air flow and pressure can be roug
estimated by calculating the upward drag exerted on a sin
sphere at the mean-air-flow speed within the granular m
rial @31#.

B. Determination of particle dynamics

We measure the mean particle velocitiesV(y) and the
velocity fluctuationsdV(y) on the upper surface of th
granular material. These should approximate particle mo
in the interior based on previous measurements@3# that
found very similar velocity profiles in the interior~measured
with magnetic resonance imaging~MRI! and x-ray tech-
niques! and on the bottom surface of a shear cell. We ret
to this issue in Sec. VI.

The trajectories of individual particles in the surface lay
are determined with a fast charge-coupled device~CCD!
camera at 3021000 frames/sec. Particle motion is extract
from four sequences of 2000 images using procedures w
ten in interactive data language~IDL ! ~RSI Inc.! based on
tracking routines provided by J. Crocker and E. Weeks.

In the first step of the tracking process, both long-ran
brightness fluctuations~i.e., nonuniform illumination! and
short-wavelength noise are reduced by applying a band
filter with a short-wavelength noise cutoff and a lon
wavelength cutoff of roughly one-particle diameter. In t
second step, the positions of particles~roughly 100 in each
image! are determined by calculating the centroid of ea
bright region in the filtered image. This yields a spatial res
lution of ,0.1 pixels, provided that the bright region is se
eral particle diameters wide. Black glass beads are be
suited than undyed glass beads for an accurate determin
of particle positions, since black beads are more opaq
This reduces internal reflections and reflections from p
ticles in deeper layers. In order to improve spatial resoluti
the intensity peaks are broadened by taking images slig
out of focus. The broader intensity peaks improve the pre
sion of the centroid determination. Defocusing also redu
the intensity of secondary peaks due to scattering by mult
particles to a level where they are no longer interpreted
particles. For the ceramic particles, the defocusing proc
eliminates multiple peaks due to the substructure of in
vidual particles.

In the third step of the trajectory determination, the p
ticles are labeled and the evolution of their position throu
an image sequence is determined. The assignment of

r
e
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GRANULAR SHEAR FLOW DYNAMICS AND FORCES: . . . PHYSICAL REVIEW E 65 011307
ticles to corresponding points in the previous and next fra
is based on a tracking algorithm, which minimizes the to
squared displacement within a sequence of frames. In a
step, the probability distribution of individual particle dis
placements is used to verify that large displacement parti
are not systematically cut off.

Since the mean-flow velocityV is comparable to the rms
velocity fluctuations close to the inner cylinder, accura
tracking of particles is only possible if the maximum di
placement is considerably smaller than the distance betw
particles. We have verified that particles are accura
tracked, even when the maximum particle displacement
tween frames approaches the particle spacing.

From the particle tracks we determine average part
velocitiesV(y) and rms-velocity fluctuations perpendicul
to the flow direction@dVx(y)# and parallel to it@dVy(y)# as
a function of distancey from the rotating inner cylinder. The
position resolution of,0.1 pixel yields a resolution of par
ticle velocities and fluctuations of better than 0.1 pix
frame. The upper limit for measurable velocities is given
the tracking routine, which requires that the maximum d
placement be smaller than one-particle diameter. Larger
ticle images yield a larger velocity range, but the veloc
profile may not improve since fewer particles may be track
in a single image. A mean-particle size of about 20 pix
gives sufficient dynamic range for the velocities with go
statistics.

The measurement of rms velocity fluctuations captu
changes in velocities on the timescale of our measurem
~of up to 1000 frames per second!. Collisions on a faster
timescale smooth out the measured fluctuations. Since a
age collision times near the sheared surface~estimated from
average speeds and densities! are comparable to the frame
ate, we are close to capturing true velocity fluctuations.
note that the collision rate may increase with increasing d
sity away from the inner cylinder. The true fluctuations m
therefore decay even more slowly with distance from
inner cylinder than the measured fluctuations described
low. Higher-frame-rate measurements of local fluctuatio
with simultaneous higher-spatial resolution would be
quired to improve the fluctuation measurements.

IV. EXPERIMENTAL RESULTS

A. Particle Dynamics

The behavior of the inner cylinder is found to be ve
similar to the dynamics of a rough plate sliding across
granular layer@32#. At low-shear rates, the motion of th
inner cylinder is intermittent with short, rapid slips, and lo
periods of sticking. At sufficiently high-shear rates or with
stiff connection between motor and cylinder, steady mot
of the inner cylinder is observed. Air flow reduces the sh
forces, as already noted by Tardoset al. @8#, and it also sup-
presses stick-slip motion.

The velocity profileV(y), when normalized by the shea
velocity U, is roughly independent ofU, as shown in Fig. 2.
Note that, as we have mentioned previously, the shear ve
ity U is computed from the rotation rate of the cylinderv
throughU52prv, with r 551 mm the radius of the inne
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cylinder. The mean-velocity profile without air flow in th
stick-slip regime~solid triangles! is essentially the same a
that for steady shearing. The dashed line shows the theo
ical prediction from our hydrodynamic model, which will b
discussed in Sec. V.

Figure 3 shows the perpendicular rms-velocity fluctu
tions dVy , which have not been previously measured in

FIG. 2. Mean-particle velocity~normalized by the shear veloc
ity! as a function of distance from the inner cylinder~in particle
diameters! for glass spheres. The respective rotation rates of
inner cylinder are~in Hz! : 0.004 ~hexagons!, 0.04 ~squares!, 0.01
~open triangles!, 0.4 ~crosses!. This corresponds to shear~with air
flow! velocitiesU, respectively, equal~in mm/s! to 1.28, 12.8, 3.2,
128. The solid triangles show the velocity profile at a rotation r
of 0.01 Hz (U53.2 mm/s)withoutair flow. The normalized mean
velocity profile is independent of shear velocity and shear dynam
~intermittent or steady motion!. The dashed line is the solution o
Eq. ~28!, with d54.7d, yw52.8d, anda50.4 ~ see text for details!.

FIG. 3. rms-velocity fluctuations perpendicular to the shear
rection. Fluctuations decrease roughly exponentially far from
inner cylinder, but more slowly than the mean flow. The rms flu
tuations are rescaled~shifted vertically! such that all experimenta
points are forced to agree aty53d, whered is the bead diameter
The dashed line is the theoretical result~see Sec. V!, with a decay
length d54.7d and a boundary positionyw52.8d. Measurements
are made on glass spheres, with symbols as in Fig. 2. The fluc
tions could be underestimated, due to finite frame rate meas
ments, especially at larger y.
7-5
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three-dimensional~3D! system to our knowledge. When da
taken at different shear velocitiesU are normalized to the
same magnitude at a distance of three-particle diame
away from the wall, the fluctuations follow the same profi
independent of shear velocity and independent of the p
ence or absence of stick-slip motion. The velocity fluctu
tions decrease roughly exponentially far from the inner c
inder but fall off more slowly withy than does the averag
velocity.

We determine fluctuations by averaging the velocity o
small section of the image over a long time and then ca
lating deviations of individual particle velocities from th
mean of that section. The measured parallel fluctuation
plitude, therefore, includes fluctuations of the flow spe
which can be caused by the soft spring connection to
motor. In order to compare velocity fluctuations during stic
slip motion and steady shearing and to compare the meas
ments to the hydrodynamic model of a steady-state flow,
show only the perpendicular fluctuations. We note that e
during steady shearing, parallel fluctuations are larger t
perpendicular fluctuations, but their ratio remains roug
independent ofy, as shown in Fig. 5 below.

In principle, the density profile could also be measur
using the tracking algorithm, by counting the average nu
ber of tracked particles as a function of positiony. In prac-
tice, however, no quantitative results could be obtained
cause of the limitation of the tracking method to reso
particle positions in the third dimension~e.g., for low densi-
ties, particles from lower layers are also counted: the den
is thus quantitatively overestimated, while this does not
fect the mean- and rms-velocity profiles!. Qualitatively, the
measured density profile increases with the radial coordin
toward a limiting value at large distances~not shown!. The
density close to the moving boundary is measured to be u
40% below its limiting value, depending on shear veloc
and airflow. The density increases rapidly with distance fr
the sheared surface over several particle diameters. This
agreement with other numerical and experimental obse
tions @3,37#.

We now examine the particle behavior near the bou
aries in more detail. Close to the inner cylinder, it is difficu
to distinguish wall particles from particles that move close
the wall. Because we image the surface from a slight an
and because the height of particles fluctuates slightly,
boundary between wall particles and sheared particles fl
tuates. We have examined the boundary conditions with b
steel spheres and rough ceramic spheres, which allow u
distinguish the particles from the layer of rough glass be
glued to the inner cylinder. We find that the granular te
perature has an approximately constant value in a reg
about three particle diameters wide near the inner wall~see
Fig. 3!.

Since particles barely move close to the stationary ou
cylinder, the granular temperature at largey is examined at a
lower frame rate than is necessary at positions close to
rapidly moving inner cylinder. This yields better statistics f
the mean velocity, but leads to an underestimate of fluc
tions in particle motion. Figure 4 shows the mean veloc
and velocity fluctuations close to the outer wall. The veloc
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decreases roughly exponentially up to roughly two-parti
diameters from the outer wall.

As discussed in the previous section, an upward airfl
reduces the effective pressure, while a downward airflow
creases the effective pressure within the material. This allo
us to measure the pressure dependence of the velocity
fluctuation profile. Figure 5 shows three experiments at d
ferent air flow rates~i.e., pressure!. In order to avoid stick-
slip motion without airflow and with downward airflow, th
motor is connected rigidly to the cylinder for these expe
ments. The crossing points of the temperature and velo
profiles in Figs. 4 and 5 are different because the mean
locity was different and the absolute value of the measu
fluctuations depends on shear velocity.

Neither the velocity profile nor the profile of rms fluctua
tions ~the granular temperature! change with pressure ove
the range of pressures accessible with this method. Th
consistent with our hydrodynamic model as described in S
V. Note that the rms fluctuations parallel to the shear dir
tion are larger by a factor of roughly 1.3, even though t

FIG. 4. Velocity ~solid circles! and fluctuation profile~open
circles! close to the stationary outer cylinder. Each profile is n
malized by the shear velocity.

FIG. 5. Velocity profile V(y) ~solid symbols! and rms-
fluctuation profiledV(y) ~open symbols! both perpendicular~no
lines! and parallel~lines! to the shear direction at different effectiv
pressures controlled by air flow. Measurements on glass sph
with upward airflow ~triangles pointing up!, no airflow ~circles!,
and downward airflow~triangles pointing down!. The measured
fluctuation profiles do not depend significantly on the pressure,
do depend on the shear velocity.
7-6
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mean velocity cannot fluctuate due to the rigid connect
between motor and cylinder. This anisotropy has been
served previously@33#. It may be connected to an anisotrop
in pressure in a sheared granular system@34,35#.

The velocity and fluctuation profiles are independent
shear velocity and shear dynamics, but may vary with
material that is sheared. The rms fluctuations decay sig
cantly more slowly than the mean velocity for all materia
Our model contains three parameters that determine the
locity and fluctuation profiles, as discussed in Sec. V. Th
parameters may depend on material properties in a nontr
way. In Fig. 6, we compare three very different materi
~steel spheres, glass spheres, rough porous ceramic parti!.
For all materials, the mean velocity decays roughly expon
tially far from the shear boundary. The characteristic len
of that decay is between 1.5- and 2-particle diameters.
velocity of glass spheres decreases more slowly away f
the sheared cylinder than does that of rough ceramic
ticles. Steel spheres are about twice as large as the g
spheres coating the surface. This leads to significant sli
the boundary, and the profile is more nearly exponentia
this case.

We have also done experiments in a narrow gap geom
where the shear region is only 4–5-particle diameters th
In this case, the velocity profile is linear and the temperat
is roughly constant across the cell, as shown in Fig. 7.

Fluctuations parallel to the shear are somewhat larger
perpendicular fluctuations. The velocity profile is again ind
pendent of shear velocity. The small gap result is consis
with the hydrodynamic model of Sec. V: The uniform rm
fluctuations across the gap are accompanied by a linear
locity gradient.

B. Shear forces

The shear stress is found to be roughly independen
shear velocity but to decrease roughly linearly with incre
ing upward air flow as shown in Fig. 8. The dependence
air flow is consistent with the results by Tardoset al. @8#
described in Sec. II. Previous experiments@36# showed that
the shear stress is directly proportional to the pressure in

FIG. 6. Comparison ofV(y) for smooth glass spheres~circles!,
rough porous ceramic particles~triangles!, and steel sphere mix
tures ~squares! at a rotation rate of 0.04 Hz, corresponding toU
512.8 mm/s.
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the granular material. We may therefore assume that air fl
decreases the pressure roughly linearly with increasing fl
rate.

When there is no air flow, we also find that the she
stress is roughly independent of shear velocity even tho
stick-slip motion is observed. This indicates that some vel
ity weakening~i.e., a decrease in shear force with increas
velocity! must occur. The mean shear stress with air flow i
factor of four smaller than the mean shear stress without
flow. For a small gap, the shear force increases with decr
ing shear velocity, eventually leading to the jamming of t
inner cylinder below a threshold shear velocity.

The air flow at which the transition from stick-slip motio
to steady shearing is observed is shown as a function
rotation rate of the cylinder, i.e., of shear velocity, in Fig.
We determine the transition from the stick-slip motion to
steady sliding motion from the emergence of a peak av
50 in the probability distribution of the shear velocity. Th
critical air flow decreases roughly linearly with rotation rat
i.e., with shear velocity.

FIG. 7. Velocity profiles~Solid lines! and rms-fluctuation pro-
files ~dashed lines! in a narrow gap geometry with gap width o
4–5 particle diameters. The velocity profile is linear and the r
fluctuation profile is constant. Measurements are made on g
spheres with rotation rates of 0.1 Hz~circles! and 0.02 Hz~tri-
angles!, corresponding toU532 mm/s and 6.4 mm/s.

FIG. 8. Mean shear stress vs air flow rate at rotation rates of
cylinder of 0.004, 0.01, 0.04, and 0.1 Hz, corresponding, resp
tively, ~in mm/s! to shear velocities of 1.28, 3.2, 12.8, 32. The she
stress decreases approximately linearly with increasing air flow.
shear stress is independent of shear velocity at most air flows~glass
spheres!.
7-7
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V. THEORY

A. Hydrodynamic model and main assumptions

Here, we propose a hydrodynamic model for granu
flow to describe the data presented in the previous sec
By hydrodynamic, we mean that alocal, mean relationship is
assumed to hold between shear stress and shear rate, in
trast to recent approaches that advocate nonlocal rela
ships ~see, e.g.,@23#, and @1#, and references therein!. The
grains are assumed to behave like inelastic hard spheres,
a diameterd and coefficient of restitutione. We therefore
neglectany friction force between grains. Within this mode
collisions between grains are instantaneous. The inelast
coefficiente is moreover assumed to be independent of
relative velocity of the two colliding particles. Our philoso
phy is different from that of more sophisticated approac
~such as the simulations of Ref.@37#!, where the microscopic
model is taken to be as realistic as possible. Here, we de
erately choose the simplest model: our goal is to show
despite its simplicity, a hydrodynamic model leads to ma
nontrivial results that are usually attributed in the literature
more sophisticated ingredients of granular flow. We check
validity by comparinga posterioriour findings to the experi-
mental results. As we demonstrate below, most of the exp
mental properties of sheared granular flow may be explai
by this hydrodynamic, locally Newtonian description of th
material.

We consider a simplified Couette geometry: the granu
material is confined between two parallel walls, separated
a distanceH. Thex axis is along the walls, while they axis is
perpendicular to it. The bottom wall, placed atx50, is as-
sumed to move at a velocityU along thex direction and the
top wall stays at rest.

We start with the equations of hydrodynamics for the
elastic hard-sphere fluid. Following common practice,
identify the granular temperature withm@dV#2, wheredV is
one component (x or y) of the rms-velocity fluctuation pre
viously defined in Sec. III, andm is the particle mass. Ther
is a small ambiguity in this definition for a sheared granu
material since thex and y components of@dV#2 ~i.e., the
components parallel and perpendicular to the flow! differ
slightly. However, as may be observed in Fig. 5, they dif

FIG. 9. Air flow at which the transition from stick-slip motion t
steady shearing is observed as a function of the rotation rate o
cylinder. The critical air flow decreases roughly linearly with t
rotation rate, i.e., with shear velocity~glass spheres!.
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only by a scaling factor close to unity. We shall therefo
disregard this anisotropy in our theoretical treatment. For
inelastic hard-sphere fluid of local particle densityr, the
equations of hydrodynamics for the mean velocity fieldV
and temperatureT may be written as@12#

mrS ]V

]t
1V•¹VD52¹•s ~1a!

mrS ]T

]t
1V•¹TD52“•Q2s:k2eT, ~1b!

where : means contraction of the two tensors. In these eq
tions,k is the symmetrized velocity-gradient tensor

ka,b5
1

2
~]aVb1]bVa!, ~2!

s is the pressure tensor,Q is the heat flux, ande is the
temperature-loss rate per unit volume. As in a Newton
fluid, we assume alinear, local relationship between fluxe
and forces. We thus write the pressure tensor as

s5PI22h~k2“•VI !, ~3!

whereP is the pressure,h is the shear viscosity, andI the
unit tensor. In a similar way, we assume Fourier’s law for t
heat flux,

Q52l“T, ~4!

with l the thermal conductivity. These equations are co
pleted by the equation of state of the material, in the fo
P5P(r,T).

In the simplified planar shear cell geometry, the me
flow is a function ofy only and parallel to thex direction:
V5V(y)ex with ex the unit vector in thex direction. From
the momentum transport Eq.~1a! in the steady state, on
then expects

]

]y
syx50, ~5!

]

]y
syy50. ~6!

This shows that both the shear stresssxy (5syx) and the
pressureP5syy are independent ofy.

B. Equation of state and high-density expressions for the
transport coefficients

In order to solve the hydrodynamic Eqs.~1!, explicit ex-
pressions for the transport coefficients and the equation
state in terms of density and temperature are needed.

When the system is at rest, the densityr in the granular
material is roughly given by the random close packing~RCP!
densityrc ~the granular system does not crystallize beca
of a slight polydispersity of the beads!. Experimentally, the
shear rate is found to dilate the system@11#. More precisely,

he
7-8
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GRANULAR SHEAR FLOW DYNAMICS AND FORCES: . . . PHYSICAL REVIEW E 65 011307
the density decrease is larger close to the boundaries, w
the shear rate is larger, than far from the moving wall, wh
the velocity goes to zero@2,37#. As already quoted in Sec
III, our experimental results for the density do qualitative
agree with this observation. Consequently,a broad range of
densitiesis explored in the sheared system, going from
value slightly below the RCP density far from the movin
wall, down to a density up to 40% less than RCP near
moving wall at high-shear rates. This makes the probl
much more difficult than in standard fluids, where the de
sity remains constant over the cell. Here, the functional
pendence of the transport coefficients on density is an im
tant ingredient of the theory since it does affect flo
properties.

1. Equation of state

For an inelastic hard-sphere system, the equation of s
may be written in terms ofg(d) the pair-correlation function
at contact (d being the diameter! @38,39#, in the form

P5rT F11~11e!
p

3
rd3g~d!G ~7!

(r is the local numerical density, i.e., the number of partic
per unit volume!. For both dilute and moderately dense sy
tems (rd3;1), g(d) is accurately described by th
Carnahan-Starling formula@38#. However, since the densit
of the granular material in the shear cell is close to rand
close packing~RCP! whereg(d) diverges, an alternative ex
pression forg(d) is usually assumed@40#:

g~d!5
1

12r/rc
, ~8!

with rc the density at RCP. The equation of state, Eqs.~7!–
~8!, then takes the following approximate form in the hig
density limit:

P5r0

1

S 12
r

rc
D T, ~9!

with r05(11e)(p/3)rc
2d3. The equation of state thus give

a natural link between temperature and density: since
pressure is independent ofy, one obtains

12
r

rc
5

r0

P
T. ~10!

This equation shows that the regions of small tempera
correspond to high-density regions,r;rc , and vice versa.

2. Transport coefficients

Expressions for the transport coefficients of the inela
hard-sphere model have been computed from the Ens
equation@12,39#. This kinetic equation takes the effects
excluded volume into account, but it neglects any correlat
between the velocities of colliding particles. This approa
yields expressions for the transport coefficients in terms
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the density, temperature, and pair-correlation function at c
tact. We refer to Refs.@12,39# for explicit expressions. We
note thatin the high-density limit, g(d) becomes very large
and the dependence of the Enskog transport coefficient
density mainly come from the terms proportional tog(d). In
this case, the transport coefficients reduce to the gen
forms

hE~r,T!.h0

m1/2

d2
g~d!T1/2,

lE~r,T!.l0

1

m1/2d2 g~d!T1/2,

eE~r,T!.e0r
1

m1/2d
g~d!T1/2, ~11!

where m is the mass of the particles andh0 , l0 , e0 are
dimensionless coefficients that depend only slightly on d
sity in the high-density limit. Ifr;rc as discussed above
these coefficients may be taken as numerical constants
nally, we mention thate0 is proportional to 12e2, wheree is
the coefficient of restitution. Thus,e050 in the purely elastic
case, as expected.

The full expressions for the transport coefficients obtain
within the Enskog kinetic theory have been found in simu
tions to be correct for small and intermediate densities@27#.
However, as mentioned above, the density of the flow
material in the shear cell is higher and close to the R
density. In this limit, some of the Enskog expressions for
transport coefficients may no longer be valid, mainly beca
correlations between colliding particles and collective ph
nomena, which are not included in the Enskog theory, th
play an important role. The reason is quite intuitive: at hi
density close to random close packing, a particle may m
substantially~over a distance of the order of its diamete!
only if its neighbors move coherently. Only collective m
tion is therefore possible. It has been found in molecu
dynamics simulations of the hard-sphere model@27# that
these correlations only affect the shear viscosity and s
diffusion coefficient, which depart from their Enskog a
proximation at high densities. On the other hand, the ther
conductivity has been found to be well described by the E
skog expression up to very high densities. Such behavio
in fact expected since transport of energy does not req
motion of particles over large distances~only ‘‘rattling’’
around the mean position is involved in energy transpo!.
Similar conclusions were reached by Leutheusser@28# on the
basis of a mode-coupling calculation for the elastic ha
sphere model.

As a result of these considerations, the thermal conduc
ity l and loss ratee are expected to keep their Enskog e
pressionslE andeE , as given in Eqs.~11!, over the whole
range of densities~between intermediate densities up
RCP!
7-9
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l~r,T!.l0

1

m1/2d2

1

S 12
r

rc
D T1/2,

e~r,T!.e0

1

m1/2d

rc

S 12
r

rc
D T1/2. ~12!

On the other hand, a crossover is expected for the s
viscosity between its Enskog approximation in Eq.~11! for
intermediate densities, towards an asymptotic stronger di
gence as a function of density very close to RCP. Suc
crossover is indeed found in molecular-dynamics calcu
tions of the self-diffusion coefficient in a monodisperse ha
sphere system close to freezing@41#. By analogy with the
behavior of supercooled liquids above the glass transi
@42#, we shall assume that very close to RCP, the visco
divergesalgebraicallyas a function of densityr nearrc

h~r,T!;
h1

S 12
r

rc
D b

m1/2

d2
T1/2. ~13!

Here,h1 is a dimensionless numerical constant. At this po
the exponentb is a phenomenological parameter in t
theory. Since the viscosity is expected to diverge m
strongly than its Enskog expression, we expectb to be larger
than one. We shall discuss in the next section how the fo
proposed in Eq.~13! compares with the experimental resul

We emphasize again that such an algebraic divergenc
the viscosity is expected in supercooled liquids close to
glass transition@42#. More precisely, an algebraic divergen
is associated with the existence of cooperative interact
that predominate over thermally activated processes@42#.
The functional form in Eq.~13! is predicted by mode-
coupling calculations of the dynamics of supercooled liqui
In the case of a 3D hard sphere, the latter approach yield
exponentb52.58 @43#.

To our knowledge, there is no expression for the viscos
over a full range of densities that would make explicit t
crossover between the Enskog expression at intermed
densities and the asymptotic expression at very high de
ties. In order to avoid restrictive assumptions about the g
eral form of the density dependence of the viscosity, we s
write, in general,

h~r,T!5h̄~r!
m1/2

d2
T1/2, ~14!

where the functionh̄(r) has the two limiting forms

r;d23,rc h̄~r!.
h0

S 12
r

rc
D ,
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r;rc h̄~r!;
h1

S 12
r

rc
D b . ~15!

As we shall show in the following sections, the knowledge
these two limiting behaviors is sufficient to obtain a quan
tative description of the flow and a qualitative picture for t
shear forces.

Combining Eqs.~9! and~12! allows us to write the trans
port coefficients in terms of the pressure and temperatur

h~r,T!.
m1/2

d2
h̄S r0T

P DT1/2, ~16!

l~r,T!.l0

1

m1/2d2

P

r0T1/2
, ~17!

e~r,T!.e0

1

m1/2d

P

T1/2
. ~18!

~Note that in order to improve readability, we dropped
numerical constant prefactorrc /r0 in the expression fore,
which amounts to a rescaling of the numerical prefactore0.!

C. rms and mean flow velocity profiles

In this section, we compute the granular temperature p
file T(y) and mean-velocity profileV(y). In the stationary
Couette geometry, the hydrodynamic equation forT(y) is
found to reduce to

]

]y
l~r,T!

]

]y
T1sxyġ2e~r,T!T50, ~19!

and

sxy5h~r,T!ġ5const., ~20!

whereġ5dVx(y)/dy is the shear rate. Using the expressi
for the shear stress,sxy5h(r,T)ġ, the second term of Eq
~19! may be rewritten assxyġ5sxy

2 /h(r,T). Note thatsxy

is negative becauseġ5]vy /]x is negative throughout the
sample.

Both equations involve the explicit form of the densi
dependence of the viscosityh(r,T), for which no explicit
functional form is available to us. At first sight, it woul
seem hopeless to obtain a full expression of the tempera
and velocity profiles. This is not the case. As we shall sho
a simple phenomenological picture, which emerges from
asymptotic forms ofh(r,T) as given in Eq.~15!, allows one
to overcome this problem and to obtain tractable express
for the temperature and mean velocity.

We proceed in two steps. First, we describe this pheno
enological ‘‘two-region’’ picture and obtain expressions f
the velocity and temperature profile. Then, in a second s
we come back to a more general but formal solution of E
7-10
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~19! and ~20! ~in the next section!. This general discussion
allows us to discuss the velocity dependences of the s
forces.

We start with the discussion of the temperature profi

The role of the the nonlinear termsxyġ in Eq. ~19! is in fact
physically quite simple to understand. It merely acts a
source~‘‘heating’’ ! term for the fluctuations: it is through thi
nonlinear contribution that the flow creates the fluctuatio
that couple back to the mean flow. However, this source t
is only effective close to the wall as we show below. Th
simplifies considerably the picture for the creation and tra
port of temperature. Basically, two regions can be trea
separately: close to the moving boundary, fluctuations
‘‘created’’ through the nonlinear coupling to the flow; fa
from the boundaries, inelastic dissipation dominates o
nonlinear heating, and the local temperature profile is de
mined entirely by the diffusion and heat-loss terms of E
~19!.

This separation may be understood on the basis of
asymptotic behavior of the viscosity discussed above.
deed, it is easy to show that far from the wall, the nonlin

term sxyġ goes to zero faster than the dissipation te
e(r,T)T in Eq. ~19!. Away from the moving boundary, th
temperature goes to zero and the density goes accord
towards RCP. From Eqs.~15! and ~18!, it follows that the
nonlinear term behaves in this region similar
sxy

2 /h(r,T)}T(2b21)/2, while the dissipative term in this re
gion scale with temperature ase(r,T)T}T1/2 @where Eq.
~18! has been used#. Since we anticipated that the expone
b is larger than one~around 1.75 as found experimentall
see below!, the nonlinear term decays more strongly towa
zero than the dissipative one. On the other hand, the non
ear term is relevant close to the moving boundary where
shear rate is large~or equivalently, the density is smaller!.
We note that if the exponentb had been equal to one, bot
previous terms would have been comparable and then
picture of two separate regions would not have been ap
priate.

Close to the walls, the full nonlinear equation includin
the ‘‘heating’’ term should be solved. This is in fact not ne
essary to make simple predictions for the rms- and me
velocity profiles. An inspection of the experimental profile
as presented in Fig. 3, shows that in the region close to
moving boundary, the temperature is roughly constant ov
small layer, several-particle diameters thick, with a thickn
that may be considered in a first approximation to be in
pendent of the shearing velocityU. As a first step, we there
fore assume in anad hocway that for distancesy smaller
than a cutoff distanceyw , the temperatureT is constant,
T(y)5T0. In this pictorial view, the boundary layer corre
sponds to the region where the nonlinear term is import
At this stage, the parameterT0 merely plays the role of a
normalizing constant. We shall come back to this point
much more detail in the discussion of the shear forces
cause, while the precise value ofT0 does not influence the
velocity profile, it does strongly affect the prediction for th
shear forces.
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We are now in a position to obtain an explicit expressi
for the temperature profile. For distances larger thanyw , the
transport equation for the temperature Eq.~19! reduces to

]

]y H l0

1

m1/2d2

P

r0T1/2

]

]yJ T2e0

1

m1/2d
PT1/250, ~21!

where the high-density expressions for the transport coe
cients Eqs.~18! has been used.

As shown previously, the pressureP is independent ofy,
so one may rewrite Eq.~21! as

]2

]y2 T1/22
1

d2 T1/250, ~22!

whered has the dimension of a length and is defined as

d25
2l0

e0r0 d
. ~23!

The parametersl0 ande0 are just numerical constants in th
high-density regime of interest to us. Therefore, one expe
d to be of the order of a few-particles diameters. Note t
sincee0 is proportional to 12e2 ~with e the restitution co-
efficient!, the decay lengthd goes to infinity when the sys
tem become perfectly elastic, as one would expect. T
equation has to be completed by boundary conditions for
temperature at both walls. At the moving wall, we setT(y)
5T0 for y,yw , as discussed above. At the wall at re
detailed experiments, as shown in Fig. 4, show that the t
perature profile is compatible with a vanishing heat-flux co
dition dT/dy50. ~In general, one expects the boundary co
dition for the temperature to relate the heat flux at t
boundary to the product of the interface@Kapitza# resistance
and the temperature jump: Here, we just assume that
Kapitza resistance is very small. We shall come back to
point in the next section.!

The solution of Eq.~22! with these boundary conditions i

y,yw , T~y!5T0 , ~24!

yw,y, T1/2~y!5T0
1/2

coshS H2y

d D
coshS H2yw

d D . ~25!

In this equation,H is the thickness of the shear cell. A
shown in Fig. 3, this result is in good agreement with t
experimental data. We find thatd54.7d and yw52.8d for
glass spheres, but these parameters depend somewhat o
material properties.

The mean-velocity profile can be obtained along the sa
lines from the temperature profile of Eq.~25!. Equation~20!

gives unambiguously the shear rateġ in terms of the tem-
perature profileT(y), since they dependence of the densit
is already contained in the temperature through the equa
of state, Eq.~10!. It seems at first sight difficult to make a
explicit prediction for the velocity profile, since the explic
7-11
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BOCQUET, LOSERT, SCHALK, LUBENSKY, AND GOLLUB PHYSICAL REVIEW E65 011307
expression of the viscosity is not known over the full ran
of densities. However, the ‘‘two regions’’ picture, whic
emerged in the discussion of the temperature profile, is
evant for the mean-velocity profile, as well. Far from t
wall ~i.e., for y.yw), the temperature decays to zero and
density goes accordingly to the RCP limit@as shown in Eq.
~10!#. In this region, one thus expects an ‘‘anomalous’’ sc
ing for the density dependence of the viscosity, according
Eq. ~15!. Thus, one finds fory.yw

h0

m1/2

d2 S P

r0TD b

T1/2ġ5sxy . ~26!

It is interesting to note that this relation yields a scali
relationship between the temperatureT and ġ that can be
tested experimentally. The previous equation may be rew
ten in the form

ġ5H sxy

h0

m1/2

d2 S P

r0
D bJT1/2(2b21). ~27!

This power-law relationship has been checked experim
tally, as shown in Fig. 10, where the local rms-velocity pr
file dV[(T/m)1/2 is plotted versus the local velocity grad
ent dVx /dy on logarithmic scales.

In this plot, a scaling exponenta50.4 is obtained for the
glass bead system. This allows for an experimental dete
nation of the exponentb for the ‘‘anomalous’’ divergence o
the viscosity close to RCP. According to Eq.~27!, a is iden-
tified in the theory asa51/(2b21), so thatb>1.75. The
fact that this exponent exceeds unity seems to confirm
collective character of the dynamics in the granular mater
However, we caution that the fluctuations could be unde
timated~see Sec. III B!, causing the relationship in Fig. 10 t
be affected to an extent that is hard to estimate. This valu
the exponent is slightly smaller than the previously me
tioned result forb52.58 obtained within the mode-couplin

FIG. 10. Connection between the local rms-velocity fluctuatio
and local shear rate~same symbols as for Fig. 2!. Local fluctuations
are found to increase approximately as a power law of the lo
velocity gradient, with a power of 0.4~dashed line!.
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theory applied to the case of hard spheres@43#. A possible
reason for this difference could lie in the rotational degre
of freedom of the beads in the experimental system that
absent from the mode-coupling estimate. By increasing
number of degrees of freedom, an effective decrease of
shear viscosity could be obtained. We leave this question
further investigation.

We emphasize that the observation of the scaling relat
ship betweenġ andT1/2 is not restricted to our system. W
have applied the same procedure to the data of Howellet al.
@44#, which were obtained in a 2D system of photoelas
disks: for the 14 different densities studied in this paper
similar scaling relationship between the localdVrms andġ is
measured. An exponenta;0.5 is obtained, yieldingb;1.5
for that experiment. Moreover, both the mean and fluctuat
profiles obtained by Howellet al. can be fitted within the
present paper. This observation seems to indicate that
coupling between mean and rms fluctuations, which is
essence of our model is a general feature of the underly
dynamics of the granular material.

Once the exponentb is determined, the velocity profile
may be obtained by integration. In the boundary layer for
temperature (y,yw), the temperature is assumed to be
constant; Eq.~20! then shows that the shear rate is consta
yielding a linear velocity profile. This observation is i
agreement with the experimental velocity profiles, as can
seen by a careful inspection of Fig. 2 fory,yw . On the
other hand, fory.yw , the velocity profile is obtained by
integrating Eq.~27! together with the solution~25! for the
temperature profile. The full velocity profile is obtained b
matching the two solutions atyw ~where we assume continu
ity of velocity and shear rate!. The solution obeying no-slip
boundary conditions at both walls takes the form

Vx~y!5US12

E
0

y

dy8 f~y8!

E
0

H

dy8 f~y8!
D , ~28!

where the functionf(y) is defined as

y,yw , f~y!51, ~29!

y.yw , f~y!5F coshS H2y

d D
coshS H2yw

d DG
2b21

. ~30!

When the valueb51.75 previously obtained for the ex
ponentb is used, the theoretical velocity profile defined
Eqs.~28! and~30! is easily integrated numerically. The resu
is plotted in Fig. 2 together with the experimental results.
can be seen, good agreement is obtained with the theor

Although the two-region picture seems to be quite s
cessful in describing the mean- and rms-velocity profiles
would be more satisfactory to have a full expression of
density dependence of the viscosity over the full range
densities in order to integrate Eqs.~19! and ~20! explicitly.
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GRANULAR SHEAR FLOW DYNAMICS AND FORCES: . . . PHYSICAL REVIEW E 65 011307
The two-region picture is to be considered merely as
simple and physically sound way of dealing with our ign
rance of the explicit functional dependence of the viscos
on density. Its success indicates that the velocity profile d
not depend crucially on the details of this relationship.

D. Towards ‘‘solidlike’’ shear forces

1. General discussion

In his pioneering work, Bagnold measured the shear fo
in a Couette cell and found a quadratic increase of the s
force as a function of the shearing velocitysxy}U2 @11#.
Using kinetic arguments, he proposed a phenomenolog
relationship between shear stress and shear rate in the
sxy}ġ2, which may be understood by assuming that the c
lision frequency between granular particles is fixed by
shear rateġ itself. Subsequent experiments were perform
@8#, which showed that the functional dependence of
shear force as a function of the shearing velocity does
pend on whether the system is allowed to dilate or not: w
the system is sheared at constant volume, the shear for
found to be proportional toU2 ~i.e., the Bagnold scaling!;
when the system is allowed to dilate, the shear force is fo
to be independent ofU. In the present geometry, the mater
is allowed to dilate and a solidlike friction force, i.e., a
proximate independence ofU, is found.

It is tempting to ascribe the solidlike behavior to a so
friction force existing between granular particles at conta
On the other hand it is difficult to reconcile this behavi
with constant-volume Bagnold scaling,sxy}U2, whose ori-
gin is purely kinetic. Here, we shall show that both behavi
may be accounted for within the hydrodynamic model
have introduced.

Constant volume results: It is evident that the Bagn
scaling,sxy}U2, originates from a general dimensional a
gument, whatever the local relationship between shear s
and shear rate is: In other words, theglobal scaling sxy
}U2 obtained in a constant volume experiment does not n
essary imply that thelocal relationship issxy}ġ2. The rea-
son is very simple. Let us consider a system ofN inelastic
hard spheres contained in a plane Couette cell of~fixed! vol-
umeV. The bottom boundary is moving at a constant velo
ity U, while the upper boundary stays at rest.

In this case, the only microscopic velocity scale enter
the dynamics isU, the velocity of the moving wall. In othe
words,all dynamical quantitiesmay be written in terms of
the shear velocityU only, which fixes the only time scale in
the problem. From the analysis of the fullN-body dynamics,
one thus concludes in general that

Vx~y!

U
5 f S y

d
,
N

V
,
H

d D ,

T~y!

mU2 5gS y

d
,
N

V
,
H

d D ,

P5
N

V
pS N

V
,
H

d DmU2,
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sxy5
N

V
s0S N

V
,
H

d DmU2, ~31!

where f, g, p, s0 are dimensionless functions;H is the cell
width andd the bead diameter.

In this context, the Bagnold scaling results naturally fro
the last equality in Eq.~31!, whatever the relationship be

tweensxy and ġ is. The only important condition is that th
microscopic dynamics of the granular material only invol
binary collisions.

Constant pressure results: Experiments performed i
constant pressure situation are more subtle to handle.
introduction of a constant pressure in the system introduc
time scale, namely (m/Pd)1/2, which will compete with the
time scale associated with the shearing velocity,d/U. Thus,
different regimes might be found depending on whether
time scale associated with the shear velocity is larger
smaller than the one associated with pressure.

We show in the following that in the situation of consta
pressure, a shear force independent of shear velocity is
tained at large shearing velocity, while a velocity weaken
regime is found at small velocities.

2. Shear forces at constant pressure from the hydrodynamic
model: Qualitative

In the previous section, the experimental mean- and r
velocity profiles were reproduced by using a simple ‘‘tw
regions’’ picture, which allowed us to overcome our lack
knowledge of the full functional dependence of the viscos
on the density. However, the shear force originates in
interaction between the wall and the fluid particles adjac
to it. Therefore, one needs a good description of the reg
close to the wall in order to get valuable information abo
the shear forces. This requires a careful analysis of the n
linear ‘‘heating’’ term in the equation for the temperatur
Eq. ~19!, which we perform in this section.

We first present an approximate, qualitative argument t
helps explain physically what quantities control the frictio
force in the shearing experiment. We then present the
approach, which clarifies the crude approximations made
the qualitative arguments.

The shear force is defined in the hydrodynamics mode
the viscosity times the shear rate, both evaluatedat the
boundary. Using the expression for the viscosity, Eq.~14!,
this yields

sxy5h̄S r0T0

P Dm1/2

d2
T0

1/2ġU
0

. ~32!

We need a second equation giving the temperature at
boundaryT0. In the ‘‘two-regions’’ picture we introduced
above, the temperature is created near the boundary and
transported to the rest of the system In this picture, the te
peratureT0 merely comes from a balance between the dis
pation rate close to the moving boundary2eT0 and the
‘‘heating term,’’ sxyġu0. Together this gives
7-13
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sxyġu0.
e0

m1/2d
PT0

1/2, ~33!

where we have used the expression in Eq.~18! for the dissi-
pation ratee.

The shear rateġu0 may be eliminated from the two prev
ous equations, Eqs.~32! and ~33!, to give

sxy

P
.F e0

r0d3h̄S r0T0

P D r0T0

P G1/2

. ~34!

Now, depending on the ratior0T0 /P, two limiting behav-
iors are obtained:

~i! If r0T0 /P is large, then the viscosity takes its interm
diate density expression in Eq.~15!, h̄(r0T0 /P)
.h0P/r0T0. In this limit, one then obtains from Eq.~34!

sxy.m0P, ~35!

with m05e0h0 /r0d3 a dimensionless constant. In oth
words, the shear force is expected to be independent o
shear rate and proportional to pressure, as is usually foun
solid friction.

~ii ! If r0T0 /P is small, then the viscosity takes its hig
density expression in Eq.~15!, h̄(r0T0 /P).h1(P/r0T0)b

and Eq.~34! gives

sxy

P
.Fe0h1

r0d3S P

r0T0
D b21G1/2

. ~36!

The temperatureT0 enters explicitly in this formula. It has to
be obtained as a function of the shearing velocityU. This
may be accomplished using the energy balance discu
above, which results in Eq.~33!. In this equation, one ex
pects the shear rate at the boundary to be roughly given
ġu0;U/l 0, wherel 0 is a distance typically of the order of
few diameters~this point is confirmed in the full discussio
to follow!. One thus gets

T0
1/2;

sxy

P

d

l 0
m1/2U, ~37!

which still depends on the ratio between shear stresssxy and
pressureP. Combining this expression forT0 as a function of
U andsxy /P and the formula forsxy /P as a function ofT0
in Eq. ~36! yields the final result

sxy.m1PS r0mU2

P D 12b/2b

, ~38!

where we have introduced the dimensionless const
m15@e0h1 /r0d3(d/l 0

12b)12b#1/2b.
The crossover between the two regimes occurs at

‘‘critical’’ velocity Uc defined asUc;(P/mr0)1/2.

3. Shear forces: Quantitative

These results obtained from the arguments of Sec. V
are in fact fully confirmed by a more detailed and care
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analysis of the nonlinear set of equations for temperature
velocity, Eqs.~19! and ~20!. Here we present the full analy
sis. In order to simplify the discussion, we assume that
granular material is semi-infinite, ı.e., the cell widthH is
larger than the decay length for temperatured defined in Eq.
~23!.

We proceed in two steps. First, we obtain two closed i
plicit equations for the temperature at the boundary (T0) and
the shear stresss from an analysis of Eqs.~19! and ~20!.
These equations are written in terms of the general form
the viscosity, Eq.~14!. Then in a second step, we discuss t
different limiting behavior for the shear stress as a funct
of the shear velocityU ~‘‘large’’ and ‘‘small’’ velocities!.

~a! First condition definingT0 and sxy : We first rewrite
the full temperature equation Eq.~19!, in terms of the ex-
pressions for the transport coefficients Eqs.~14! and ~12!,

]

]y H l0

m1/2d2

P

r0T1/2

]

]yJ T1
sxy

2

h̄~r!
m1/2

d2
T1/2

2e0

1

m1/2d
PT1/250, ~39!

which can be rewritten as

]2

]y2 T1/21
Ts

d2h̄~r!T1/2
2

1

d2 T1/250, ~40!

where we have introducedTs5d2sxy
2 r0d4/(2l0P), a quan-

tity with the dimension of a temperature; It may be rewritt
more conveniently asTs5(P/r0)(sxy /P)2(r0d3/e0), if we
use the explicit expression ofd, which has been given in Eq
~23!. It is important to note that the termh̄@r(y)# is a func-
tion of T(y) only through the equation of state, Eq.~9!. Let
us introduceu5(T/m)1/2, which has the dimension of a ve
locity. A first integral of Eq.~39! may be obtained using a
standard recipe of classical mechanics: we multiply Eq.~39!
by du/dy and integrate overu. We obtain

1

2 S du

dyD
2

1E
0

u

du8
Ts

md2

1

h̄~r0mu82/P!u8
2

1

2d2 u25E.

~41!

Note that the density dependence ofh̄(r) has been rewritten
in terms of its dependence onu5(T/m)1/2 thanks to the
equation of state Eq.~10!. The parameterE is a constant,
which in the mechanical analogy, fixes the ‘‘energy’’ of th
system. We now introduce the effective ‘‘potential’’V(u)
defined as

V~u!5E
0

u

du8
Ts

md2

1

h̄~r0mu82/P!u8
2

1

2d2 u2, ~42!

which allows us to rewrite Eq.~41! as
7-14
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1

2 S du

dyD
2

1V~u!5E. ~43!

The behavior of the potentialV(u) can be obtained by ana
lyzing the two limitsu→0 andu→`. The limit u;0 cor-
responds to small temperature, i.e., densities close to R
According to the expression of the viscosity close to RC
Eq. ~15!, the first term in the potential in Eq.~42! behaves in
this limit similar to

E
0

u

du8
Ts

md2

1

h̄~r0mu82/P!u8

.
Tsd

2

h1m3/2d2 S r0m

P D bE
0

u

du8u82b21}u2b.

~44!

This term vanishes more rapidly than the last, quadratic t
of V(u) ~since the exponent verifiesb.1). Therefore, close
to u;0, one hasV(u).2(1/2d2)u2.

In the limit of largeu, i.e., high temperature and interm
diate density, the integral term inV(u) behaves as

E
0

u

du8
Ts

md2

1

h̄~r0mu82/P!u8
.E

0

u

du8
r0Ts

h0Pd2 u8

5
r0Ts

h0P

u2

2d2 , ~45!

which, when combined with the second term in Eq.~42!,
gives

V~u!5Fr0Ts

h0P
21G u2

2d2 . ~46!

Thus, depending on the sign of the first factor on the ri
had side of the equation,V(u) goes to plus or minus infinity
whenu→`. In Fig. 11, we have arbitrarily chosen a positiv

FIG. 11. Typical behavior of the potentialV(u) as a function
of u.
01130
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sign to emphasize the different behavior ofV(u) in the dif-
ferent limits, but the discussion does not depend on this
ticular choice.

The ‘‘energy’’ E in Eq. ~41! may be computed from the
boundary conditions. As already mentioned, we assume
semi-infinite system in this section to simplify the discu
sion. At infinity, both the temperature and its gradient a
expected to vanish, and so doesu: du/dy→0 and u→0.
Consequently, the ‘‘energy’’E is obtained to be zero:E50.
This imposes the temperature at the boundary,T05mu0

2,
which has to satisfy

1

2 S du

dyD
2U

y50

1V~u0!50. ~47!

As we mentioned briefly in Sec. V C, one expects, in gene
that the boundary condition for the temperature relates
temperature gradient to the temperature at the boundar
the form

JQ52k
dT

dy U
y50

5RKTuy50 , ~48!

whereRK is a phenomenological parameter, usually deno
as the Kapitza resistance. The ratiol K5k/RK has the di-
mension of a length. Following the same arguments that
us to the expression of the thermal conductivity, Eq.~18!, RK
is expected to be proportional to the fluid-wall collision fr
quency, i.e., toP/@r0T1/2(y50)#. The lengthl K is thus ex-
pected to be independent of pressure, and only fixed by
‘‘microscopic’’ quantities such as the diameter of the pa
ticles and the roughness of the walls. Rewriting Eq.~48! in
terms of the fieldu, we find the condition for the temperatur
at the boundary

1

2l 2 u0
21V~u0!50, ~49!

with l 52l K . Using Eq.~42! for V(u), we obtain

1

2 S 1

l 2 2
1

d2Du0
21E

0

u0
du

Ts

md2

1

h̄~r0mu2/P!u
50, ~50!

where we recall thatT05mu0
2 and Ts5(P/r0)(sxy /

P)2(r0d3/e0).
It is interesting to note that, since the second term in

~50! is positive, the first term has to be negative, so thal
.d. In the opposite case, the only allowed solution to E
~50! is T050, i.e., no temperature is introduced in the sy
tem. This condition is in some sense expected: ifl goes to
zero, the boundary condition for the temperature at the w
Eq. ~48! imposesT050, so that no temperature may be i
troduced in the system. Physically,l is related the amount o
energy input at the boundary, whiled has to do with the
dissipation@see Eq.~23!#, so the conditionl .d may be
understood as an energy balance condition: if not eno
energy is introduced in the system at the boundary, the
sipation is too strong to allow flow.
7-15



-

he

-
r

e

f
m
n

ra

to
E

e-

t

ro-
as

om

ed

-

tion

en-

q.

BOCQUET, LOSERT, SCHALK, LUBENSKY, AND GOLLUB PHYSICAL REVIEW E65 011307
~b! Second condition definingT0 andsxy : A second con-
dition relatingsxy andT0 may be obtained by formally in
tegrating the momentum equation~20!:

Vx~y!5U2E
0

y usxyu
h~r,T!

dy8, ~51!

where we used the fact thatsxy,0 to replacesxy by
2usxyu. As y→`, the velocity goes to zero, so one gets t
condition

U5E
0

` usxyu
h~r,T!

dy8. ~52!

The explicit form of they dependence of density and tem
perature is not known explicitly, but may be obtained fo
mally from the first integral obtained previously, Eq.~41!
~with E50). The latter yields an implicit condition for th
field u as

dy52
du

A22V~u!
, ~53!

which allows us to rewrite the second condition Eq.~52!, in
terms ofh(r,T) only

U5
usxyud2

m E
0

u0 1

h̄~r0mu2/P!u

du

A22V~u!
, ~54!

where the potentialV(u) is given in Eq.~42!.
The two equations Eqs.~50! and ~54! in principle allow

bothT0 andsxy to be determined in terms of the pressureP
and velocityU.

~c! Limiting behaviors of the shear forces: Two limits o
the previous equations may be discussed for large and s
shear velocity limitU ~we shall specify below what we mea
by ‘‘large’’ and ‘‘small’’ !.

~i! Large velocity limit: Let us assume that the tempe
ture at the boundaryT0 satisfiesT0.P/r0. This corresponds
to the large velocity limit. In this case, the density close
the wall is intermediate and the shear viscosity takes its
skog asymptotic expression, as quoted in Eqs.~14! and~15!:
h̄(r0mu2/P).P/r0mu2.

In Eq. ~50!, corresponding to the first condition, the int
gral is dominated by its largeu behavior, where the function
h̄ behaves similar toh̄(r0mu2/P).(P/mr0)u22. To a good
approximation, the first condition then takes the asympto
form

1

2 S 1

l 2 2
1

d2Du0
21E

0

u0
du

Ts

d2

r0u

h0P
50, ~55!

which may be rearranged to give

S 1

l 2 2
1

d2 1
r0Ts

d2h0PDu0
250. ~56!

Using the expression forTs , one gets
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sxy5mdP, ~57!

with md5$h0e0 /r0d3(12d2/l 2)%1/2.
Although the model we have developed is purely a hyd

dynamic model, this relationship is usually referred to
solidlike behavior.

The temperature at the boundary may be obtained fr
the second condition Eq.~54!. The integral on the right-hand
side of Eq.~54! is dominated by the behavior nearu.u0,
with h̄(r0mu2/P).P/r0mu2 andV(u).V(u0)52u0

2/2l 2.
One thus gets

U.
sxyd

2

m1/2

l

u0
E

0

u0
du

mr0u

h0P
5

sxy

P
m1/2

r0d2l

2h0
u0 ,

~58!

which gives eventually

T05mu0
25zdmU2, ~59!

where the numerical prefactorzd is defined as zd
5@2h0 /(mdr0d2l )#1/2.

This shows that the large velocity regime that we defin
asT0.P/r0 ratifiesU.@P/(m tmr0)#1/2;(Pd3/m).

~ii ! Small velocity limit: In this case the viscosity is ex
pected to behave ‘‘anomalously,’’ withh̄(r0mu2/P)
.h1(P/r0mu2)b. In this limit, the first condition, Eq.~50!,
then takes the form

05
1

2 S 1

l 2 2
1

d2Du0
21E

0

u0du

u

Ts

mh1d2S mr0u2

P D b

, ~60!

which can be reorganized to give

sxy5PF S 12
d2

l 2Dbh1e0

r0d3 G1/2S r0mu0
2

P D 12b/2

. ~61!

This equation has to be completed by the second condi
Eq. ~54!. In this equation, the potential termV(u) may be
approximated byV(u).(1/2d2)u2, since the temperatureT
5mu2 is small~see the discussion of the shape of the pot
tial in the previous subsection!. Together with the asymptotic
expression of the viscosity in this limit, one may rewrite E
~54! as

U5
sxyd

2

mh1
E

0

u0S mr0

P D b

u2b21
du

A 1

d2 u2

, ~62!

which yields

U5S P

mr0
D 1/2sxy

P

r0d2d

2b21 S r0mu0
2

P D 2b21/2

. ~63!

When combined with Eq.~61!, one gets the following
relationship between shear stresssxy andU :
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sxy5mWPH U2S mr0

P D J 12b/2b

. ~64!

The temperature at the boundary is then given as

T05zW

P

r0
H U2S mr0

P D J 1/2b

, ~65!

where the two numerical prefactorsmW and zW are de-
fined as mW5@(12d2/l 2)(e0 /r0d3)bh1# (2b21)/(2b)(2b
21/r0d2d)(12b)/b and zW5@(2b21)/(mWr0d2d)#1/(2b21).
The stress crosses over from its low velocity power-law
velocity behavior to its high-velocity constant value
U'Uc5P/(mr0).

A crucial feature of theU dependence of shear stress
this regime is that it isvelocity weakening, i.e., the shear
stress decreases with increasingU for U,Uc because
b.1.

4. General remarks about shear forces at constant pressure

Before ending this section, we would like to emphasiz
few points:

We have identified two regimes in the shearing veloc
dependence of the shear force. Forsmall velocities, the shear
force is velocity weakening, as obtained in Eq.~64!. For
large velocities, the shear force is found to be ‘‘solidlike,’’
i.e., independent of the shearing velocity, and proportiona
pressure, as shown in Eq.~57!.

The cross-over between one regime and the other is fo
to occur at acritical velocity, Uc5(Pd3/m)1/2.

In the velocity weakening regime, i.e. for velocitie
smaller thanUc , the steady sliding regime is expected to
unstable. Indeed, as]sxy /]U,0, the steady sliding situa
tion is unstable to small fluctuations~see Refs.@45,46# for a
full discussion!. As a result, one might expect astick-slip
behavior of the system for U,Uc. Note, however, that the
present model cannot be used to describe the whole stick
cycle since it is expected to fail at a vanishing velocity, i
during the stick period. How this prediction relates to t
stick-slip to steady sliding transition will require furthe
study.

Finally, it is interesting to note that both the large a
small U limits of the shear rates Eqs.~57! and ~64! are in
agreement with our previous dimensional analysis of the
namics in the constant volume case~see Sec. V D 1!. Since
on dimensional grounds the pressure should be proporti
to U2 when the volume is fixed, one finds that both expr
sions reduce to the Bagnold scalingsxy}U2. We emphasize
that this ‘‘global’’ scaling holds even if the local Bagnol
relationshipsxy}ġ2 is not expected to hold in the sma
velocity regime~where the viscosity exhibits an ‘‘anoma
lous’’ behavior!.

VI. CONCLUSIONS

In this paper, we have investigated both experimenta
and theoretically the shear dynamics of granular flow. T
granular material was sheared in a Couette cell, instrume
01130
a

o

nd

lip
.

-

al
-

y
e
ed

to allow measurements of both shear forces and ‘‘mic
scopic’’ dynamics of individual particles. The latter measu
ments were performed by tracking the instantaneous p
tions of particles on the upper surface using a fast cam
and an imaging procedure. A variable upward air flo
through the granular material allows the internal pressure
be adjusted. Experimentally, the following results we
found:~i! granular flow is restricted to a small region close
the moving boundary;~ii ! the normalized velocity profile is
independent of the shearing velocity, pressure~i.e., airflow!,
and of the type of motion of the moving cylinder~stick-slip
or continuous sliding!; ~iii ! the shear force acting on th
moving cylinder is independent of the shearing velocity a
proportional to pressure, as shown in the planar geometr
@36#; ~iv! there is a close connection between local fluctu
tions and mean flow, as manifested in the apparent pow
law relationship measured experimentally between these
local quantities~Fig. 10!; ~v! the rms velocity profile decays
more slowly as a function of the radial coordinate than do
the mean-velocity profile. However, we have cautioned t
the functional form of the fluctuation profiles could be a
fected by frame rate limitations. We find that these gene
features occur for several different types of particles, thou
there are quantitative differences.

On the basis of these observations, we have propos
‘‘hydrodynamic’’ model for the granular flow, in which the
granular material is assumed to behave similar to a loc
Newtonian fluid. In contrast to ‘‘classical’’ fluids howeve
the temperature and density of the material are not cons
over the shear cell. The temperature, defined in terms of
fluctuations of the velocity, is created at the moving boun
ary and propagated through the material. The tempera
profile thus results from a balance between heat flux
local energy loss due to the inelasticity of collisions. As
consequence, the density and temperature dependenc
the transport coefficients play a crucial role.

In the high-density regime under consideration, simp
asymptotic expressions for the transport coefficients may
obtained within the Enskog approximation. The latter
however expected to be invalid for the density dependenc
the viscosity at very high densities~close to random close
packing, RCP! where collective rearrangements comes in
play. This led us to assume a stronger divergence of
viscosity as a function of the density close to RCP. In
manner analogous to what is usually proposed in sup
cooled liquids, we have assumed an algebraic divergenc
the viscosity near the RCP density. Using the equations
transport of momentum and heat, we then compute the m
and rms-velocity profiles. Those are found to be in very go
agreement with the experimental results. Moreover, the s
ing law relationship between the mean- and rms-veloc
profiles that is found experimentally is also predicted fro
the model; though the experimental results may be affec
by frame rate limitations of our measurements.

Finally, the velocity dependence of the shear force is
termined. Two regimes are predicted, depending on whe
the velocity is larger or smaller than a critical velocityUc
5(Pd3/m)1/2. For large velocities, asolidlike friction force
is predicted, i.e., independent of the shearing velocity,
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agreement with the experimental observation. For small
locities, avelocity weakeningregime is predicted, consisten
with the occurrence of stick-slip motion in this case. W
emphasize that these results are found within the hydro
namic model, even if no solid friction force is assumed
hold between the grains. Of course, we expect the mode
fail at sufficiently smallU as the static regime is approache

In our paper, we have assumed that the flow on the up
surface is close to that within the interior of the Couette c
as found in earlier work@3#. However, since the particles o
the surface are less constrained, their fluctuations could
somewhat different from those in the interior, even when
apply a downward pressure through an airflow. While M
and x-ray measurements in the interior@3# could not resolve
fluctuations, recent measurements of fluctuations on
more constrained bottom surface layer by the Chicago gr
@47# reveal fluctuation profiles similar to ours: Fluctuatio
decay with a characteristic length longer than that for
mean velocity. As in our experiments on the top surfa
fluctuations are found to be proportional to the velocity g
dient to a power close to 0.5. The scaling holds over th
orders of magnitude in velocity gradient in these measu
ments. The velocity profiles found in these two experime
differ somewhat; however, differences in geometry~inner
and outer radii!, material properties, and measurement me
hy

h.

ys

i-

es

01130
e-

y-

to
.
er
l,

be
e
I

e
p

e
,
-
e
-

s

-

odology make a direct comparison between the experim
difficult.

The main point of the present paper is the agreement
tween our measured velocity profiles~in particular the con-
finement of velocity gradients to a thin shear band! and fric-
tion force and the predictions of a Newtonian hydrodynam
model with a strong density dependence of the visco
taken from models of the glass transition.

Many questions are still open. One important proble
which is not discussed here, is the temporal response of
system when a velocity step is imposed. Such an experim
would provide information about the transport mechani
within the granular material. The response may be predic
in principle from the hydrodynamic model and could provi
an independent test of its validity.
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